-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathops.py
223 lines (189 loc) · 8 KB
/
ops.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
import tensorflow as tf
import tensorflow.contrib.slim as slim
from tensorflow import gfile
import numpy as np
import os
import matplotlib.pyplot as plt
import PIL
import imageio
from util import *
DNA_KERN_SIZE = 5
RELU_SHIFT = 1e-12
def get_batch(sess, img_tensor, action_state_tensor, batch_size, next_state_tensor=None):
img, action, state = sess.run([img_tensor, action_state_tensor, next_state_tensor])
return img[:,:,:,:,:], img[:,:,:,:,:], action, state
def build_psnr(true, pred):
return 10.0 * tf.log(1.0 / tf.losses.mean_squared_error(true, pred)) / tf.log(10.0)
def lrelu(x, leak=0.2, name="lrelu"):
with tf.variable_scope(name):
f1 = 0.5 * (1 + leak)
f2 = 0.5 * (1 - leak)
return f1 * x + f2 * abs(x)
def build_g_adv_loss(d_out_gen, arg_loss):
if arg_loss == 'bce':
return tf.losses.sigmoid_cross_entropy(
tf.ones_like(d_out_gen), d_out_gen)
elif arg_loss == 'wass':
return tf.reduce_mean(d_out_gen)
else:
raise ValueError('unexpected loss argument')
def build_d_loss(d_out_direct, d_out_gen, arg_loss):
if arg_loss == 'bce':
d_direct_loss = tf.losses.sigmoid_cross_entropy(
0.9 * tf.ones_like(d_out_direct), d_out_direct)
d_gen_loss = tf.losses.sigmoid_cross_entropy(
tf.zeros_like(d_out_gen), d_out_gen)
elif arg_loss == 'wass':
d_direct_loss = tf.reduce_mean(d_out_direct)
d_gen_loss = -tf.reduce_mean(d_out_gen)
else:
raise ValueError('unexpected loss argument')
d_direct_loss_summary = tf.summary.scalar('discriminator_direct_loss', d_direct_loss)
d_gen_loss_summary = tf.summary.scalar('discriminator_gen_loss', d_gen_loss)
return d_direct_loss + d_gen_loss
def cdna_transformation(prev_image, cdna_input, num_masks, color_channels):
"""
Adapted from:
https:https://github.com/tensorflow/models/tree/master/video_prediction
Apply convolutional dynamic neural advection to previous image.
Args:
prev_image: previous image to be transformed.
cdna_input: hidden lyaer to be used for computing CDNA kernels.
num_masks: the number of masks and hence the number of CDNA transformations.
color_channels: the number of color channels in the images.
Returns:
List of images transformed by the predicted CDNA kernels.
"""
batch_size = int(cdna_input.get_shape()[0])
# Predict kernels using linear function of last hidden layer.
cdna_kerns = slim.layers.fully_connected(
cdna_input,
DNA_KERN_SIZE * DNA_KERN_SIZE * num_masks,
scope='cdna_params',
activation_fn=None)
# Reshape and normalize.
cdna_kerns = tf.reshape(
cdna_kerns, [batch_size, DNA_KERN_SIZE, DNA_KERN_SIZE, 1, num_masks])
cdna_kerns = tf.nn.relu(cdna_kerns - RELU_SHIFT) + RELU_SHIFT
norm_factor = tf.reduce_sum(cdna_kerns, [1, 2, 3], keep_dims=True)
cdna_kerns /= norm_factor
cdna_kerns = tf.tile(cdna_kerns, [1, 1, 1, color_channels, 1])
cdna_kerns = tf.split(axis=0, num_or_size_splits=batch_size, value=cdna_kerns)
prev_images = tf.split(axis=0, num_or_size_splits=batch_size, value=prev_image)
# Transform image.
transformed = []
for kernel, preimg in zip(cdna_kerns, prev_images):
kernel = tf.squeeze(kernel)
if len(kernel.get_shape()) == 3:
kernel = tf.expand_dims(kernel, -1)
transformed.append(
tf.nn.depthwise_conv2d(preimg, kernel, [1, 1, 1, 1], 'SAME'))
transformed = tf.concat(axis=0, values=transformed)
transformed = tf.split(axis=3, num_or_size_splits=num_masks, value=transformed)
return transformed
def build_gdl(g_out, next_frames, alpha=1):
'''
Copied from:
https://github.com/dyelax/Adversarial_Video_Generation/
'''
pos = tf.constant(np.identity(3), dtype=tf.float32)
neg = -1 * pos
filter_x = tf.expand_dims(tf.stack([neg, pos]), 0)
filter_y = tf.stack([tf.expand_dims(pos, 0), tf.expand_dims(neg, 0)])
strides = [1, 1, 1, 1]
padding = 'SAME'
gen_dx = tf.abs(tf.nn.conv2d(g_out, filter_x, strides, padding=padding))
gen_dy = tf.abs(tf.nn.conv2d(g_out, filter_y, strides, padding=padding))
gt_dx = tf.abs(tf.nn.conv2d(next_frames, filter_x, strides, padding=padding))
gt_dy = tf.abs(tf.nn.conv2d(next_frames, filter_y, strides, padding=padding))
grad_diff_x = tf.abs(gt_dx - gen_dx)
grad_diff_y = tf.abs(gt_dy - gen_dy)
return tf.reduce_sum((grad_diff_x ** alpha + grad_diff_y ** alpha))
'''
Data loading functions
Adapted from
https://github.com/tensorflow/models/blob/master/video_prediction/prediction_input.py
'''
# Original image dimensions
ORIGINAL_WIDTH = 640
ORIGINAL_HEIGHT = 512
COLOR_CHAN = 3
# Default image dimensions.
IMG_WIDTH = 64
IMG_HEIGHT = 64
# Dimension of the state and action.
STATE_DIM = 5
def build_tfrecord_input(batch_size,
data_dir,
sequence_length,
train_val_split,
use_state,
training=True):
"""Create input tfrecord tensors.
Args:
training: training or validation data.
Returns:
list of tensors corresponding to images, actions, and states. The images
tensor is 5D, batch x time x height x width x channels. The state and
action tensors are 3D, batch x time x dimension.
Raises:
RuntimeError: if no files found.
"""
filenames = gfile.Glob(os.path.join(data_dir, '*'))
if not filenames:
raise RuntimeError('No data files found.')
index = int(np.floor(train_val_split * len(filenames)))
if training:
filenames = filenames[:index]
else:
filenames = filenames[index:]
filename_queue = tf.train.string_input_producer(filenames, shuffle=True)
reader = tf.TFRecordReader()
_, serialized_example = reader.read(filename_queue)
image_seq, state_seq, action_seq = [], [], []
for i in range(6, 20, 2):
image_name = 'move/' + str(i) + '/image/encoded'
action_name = 'move/' + str(i) + '/commanded_pose/vec_pitch_yaw'
state_name = 'move/' + str(i) + '/endeffector/vec_pitch_yaw'
if use_state:
features = {image_name: tf.FixedLenFeature([1], tf.string),
action_name: tf.FixedLenFeature([STATE_DIM], tf.float32),
state_name: tf.FixedLenFeature([STATE_DIM], tf.float32)}
else:
features = {image_name: tf.FixedLenFeature([1], tf.string)}
features = tf.parse_single_example(serialized_example, features=features)
image_buffer = tf.reshape(features[image_name], shape=[])
image = tf.image.decode_jpeg(image_buffer, channels=COLOR_CHAN)
image.set_shape([ORIGINAL_HEIGHT, ORIGINAL_WIDTH, COLOR_CHAN])
if IMG_HEIGHT != IMG_WIDTH:
raise ValueError('Unequal height and width unsupported')
crop_size = min(ORIGINAL_HEIGHT, ORIGINAL_WIDTH)
image = tf.image.resize_image_with_crop_or_pad(image, crop_size, crop_size)
image = tf.reshape(image, [1, crop_size, crop_size, COLOR_CHAN])
image = tf.image.resize_area(image, [IMG_HEIGHT, IMG_WIDTH])
image = (tf.cast(image, tf.float32) / (255.0 / 2.)) - 1.
image_seq.append(image)
if use_state:
state = tf.reshape(features[state_name], shape=[1, STATE_DIM])
state_seq.append(state)
action = tf.reshape(features[action_name], shape=[1, STATE_DIM])
action_seq.append(action)
image_seq = tf.concat(axis=0, values=image_seq)
if use_state:
state_seq = tf.concat(axis=0, values=state_seq)
action_seq = tf.concat(axis=0, values=action_seq)
[image_batch, action_batch, state_batch] = tf.train.batch(
[image_seq, action_seq, state_seq],
batch_size,
num_threads=batch_size,
capacity=500 * batch_size)
action_state = tf.concat(values=[action_batch, state_batch], axis=2)
return image_batch, action_state
else:
image_batch = tf.train.batch(
[image_seq],
batch_size,
num_threads=batch_size,
capacity=500 * batch_size)
zeros_batch = tf.zeros([batch_size, sequence_length, 2 * STATE_DIM])
return image_batch, zeros_batch