This is an implementation of conditional video prediction based on various generative adversarial networks. The technical details of this project are outlined here.
Some results (many gifs!): here
- tensorflow1.0 (tested on 1.0)
- numpy
- matplotlib
- opencv-python
- pillow
- imageio
- h5py
pip install requirements.txt
This project is done on the Push Dataset from Google Brain.
Download from https://sites.google.com/site/brainrobotdata/home/push-dataset
python train.py PATH/TO/INPUT/DATA OUTPUT/PATH
--adv
: boolean, whether to use adversarial loss- True (default)
--loss
: string, what loss to usebce
for cross entropy (default)wass
for wasserstein loss
--opt
: string, what optimizer to useadam
for ADAM Optimizer (default)rmsprop
for RMSProp
--dna
: boolean, whether to use dynamic neural advection- True (default)
python test.py MODEL/PATH INPUT/FRAME/PATH INPUT/ACTION/PATH RESULT/SAVE/PATH
Note: Input frames and actions need to be numpy files for flexibility.
--dna
: boolean, whether to use dynamic neural advection- True (default)