Skip to content

Commit

Permalink
tutorials -> new version
Browse files Browse the repository at this point in the history
  • Loading branch information
ytarazona committed Jun 25, 2023
1 parent a3a1db8 commit 6ae5e29
Showing 1 changed file with 10 additions and 6 deletions.
16 changes: 10 additions & 6 deletions docs/tutorials.md
Original file line number Diff line number Diff line change
Expand Up @@ -34,7 +34,7 @@ rf_class = inst.RF(training_split = 0.7)

Classification results:

![Original image and classified image in the left and right panel respectively.](scikit_eo_00.png){ width=100% }
![Original image and classified image in the left and right panel respectively.](images/scikit_eo_00.png){ width=100% }


## Example 02: Calibration methods for supervised classification
Expand Down Expand Up @@ -70,7 +70,7 @@ error_mccv = inst.MCCV(split_data = data, models = ('svm', 'dt', 'rf', 'nb'),

Calibration results:

![Result of the calibration methods using svm, dt, rf and nb.](scikit_eo_01.png){ width=90% }
![Result of the calibration methods using svm, dt, rf and nb.](images/scikit_eo_01.png){ width=90% }


## Example 03: Imagery Fusion.
Expand Down Expand Up @@ -128,15 +128,15 @@ axes2.grid(False)
plt.show()
```

![Proportion of Variance and accumulative.](scikit_eo_02.png){ width=70% }
![Proportion of Variance and accumulative.](images/scikit_eo_02.png){ width=70% }


```
# 07 Contributions of each variable in %:
fusion.get('Contributions_in_%')
```

![Contributions of each variable in %.](scikit_eo_03.png){ width=90% }
![Contributions of each variable in %.](images/scikit_eo_03.png){ width=90% }


```
Expand All @@ -149,7 +149,7 @@ plotRGB(arr, bands = [1,2,3], title = 'Fusion of optical and radar images')
plt.show()
```

![Fusion of optical and radar images. Principal Component 1 corresponds to red channel, Principal Component 2 corresponds to green channel and Principal Component 3 corresponds to blue channel.](scikit_eo_04.png){ width=50% }
![Fusion of optical and radar images. Principal Component 1 corresponds to red channel, Principal Component 2 corresponds to green channel and Principal Component 3 corresponds to blue channel.](images/scikit_eo_04.png){ width=50% }

## Example 04: Accuracy assessment

Expand Down Expand Up @@ -179,4 +179,8 @@ confintervalML(matrix = values, image_pred = img, pixel_size = 30, conf = 1.96,

Results:

![Estimating area and uncertainty with 95%.](scikit_eo_05.png){ width=80%}
![Estimating area and uncertainty with 95%.](images/scikit_eo_05.png){ width=80%}

```python

```

0 comments on commit 6ae5e29

Please sign in to comment.