This repository contains the code for paper "Searching Density-increasing Path to Density Peaks for Unsupervised Anomaly Detection".
Run the main.py
in the Evaulate
dictionary.
We offer a demo to evaluate single DIP on musk dataset and evaluate ensemble DIP on arrhythmia dataset.
Idea of DIP. (A) plots the data points; (B) shows the anomaly scores by color; (C) and (D) show the paths of two normal point 12 and 29; (E) and (F) show the paths of two abnormal point 43 and 38; (G)-(I) show graphs learned by DIP and its variants. (Fig. 1 in the paper)DIP achieved better average results than a lot of existing traditional and deep methods. The evaluation metrics is F1 score. This repository only show the F1 score performance, while the other results can be found in the original paper. The dataset information and other datasets used in the paper can be download from here.
ROC | arrhythmia | ionosphere | lympho | mnist | musk | pima | satellite | satimage-2 | thyroid | vowels | wbc | Average |
---|---|---|---|---|---|---|---|---|---|---|---|---|
ABOD | 0.762 | 0.922 | 0.946 | 0.733 | 0.167 | 0.678 | 0.554 | 0.793 | 0.909 | 0.965 | 0.908 | 0.757 |
CBLOF | 0.786 | 0.890 | 0.979 | 0.802 | 1.000 | 0.646 | 0.719 | 0.999 | 0.931 | 0.915 | 0.939 | 0.873 |
FB | 0.782 | 0.868 | 0.980 | 0.698 | 0.357 | 0.635 | 0.552 | 0.457 | 0.950 | 0.946 | 0.945 | 0.742 |
HBOS | 0.815 | 0.653 | 0.998 | 0.613 | 1.000 | 0.686 | 0.750 | 0.983 | 0.959 | 0.686 | 0.953 | 0.827 |
ISF | 0.808 | 0.846 | 0.995 | 0.807 | 0.997 | 0.664 | 0.730 | 0.992 | 0.979 | 0.752 | 0.919 | 0.862 |
LODA | 0.757 | 0.801 | 0.667 | 0.724 | 0.893 | 0.623 | 0.611 | 0.986 | 0.828 | 0.713 | 0.926 | 0.775 |
LSCP | 0.797 | 0.887 | 0.986 | 0.751 | 0.346 | 0.642 | 0.567 | 0.671 | 0.947 | 0.944 | 0.94 | 0.770 |
PCA | 0.778 | 0.793 | 0.986 | 0.834 | 1.000 | 0.625 | 0.628 | 0.977 | 0.956 | 0.617 | 0.906 | 0.827 |
SOD | 0.731 | 0.889 | 0.919 | 0.589 | 0.654 | 0.589 | 0.644 | 0.840 | 0.921 | 0.887 | 0.919 | 0.780 |
DAE | 0.801 | 0.947 | 0.886 | 0.794 | 0.758 | 0.665 | 0.638 | 0.799 | 0.943 | 0.555 | 0.875 | 0.787 |
DAGMM | 0.279 | 0.369 | 0.52 | 0.332 | 0.314 | 0.503 | 0.305 | 0.862 | 0.536 | 0.57 | 0.761 | 0.486 |
DSVDD | 0.684 | 0.730 | 0.796 | 0.688 | 0.767 | 0.481 | 0.670 | 0.733 | 0.693 | 0.500 | 0.911 | 0.695 |
DIP-euc | 0.811 | 0.928 | 0.913 | 0.858 | 1.000 | 0.728 | 0.652 | 0.999 | 0.946 | 0.958 | 0.943 | 0.885 |
EDIP-cos | 0.816 | 0.941 | 0.927 | 0.945 | 1.000 | 0.616 | 0.800 | 0.991 | 0.962 | 0.909 | 0.583 | 0.863 |
EDIP-euc | 0.812 | 0.916 | 0.959 | 0.861 | 1.000 | 0.73 | 0.779 | 0.999 | 0.942 | 0.933 | 0.943 | 0.900 |
EDIP-man | 0.829 | 0.875 | 0.979 | 0.824 | 1.000 | 0.738 | 0.789 | 0.998 | 0.958 | 0.921 | 0.948 | 0.900 |