-
Notifications
You must be signed in to change notification settings - Fork 1
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
1 parent
779ca07
commit a629bcf
Showing
1 changed file
with
38 additions
and
48 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -1,66 +1,56 @@ | ||
Spark Schema Generator from PostgreSQL Table Schema | ||
This repository contains a Python script that generates a Spark StructType schema from a PostgreSQL table schema. | ||
<!DOCTYPE html> | ||
|
||
Requirements | ||
To use the script, you will need: | ||
<body> | ||
|
||
Python 3.x | ||
pyspark module | ||
psycopg2 module | ||
Access to a PostgreSQL database with the schema you want to generate a Spark schema for | ||
Usage | ||
Clone the repository to your local machine: | ||
<h1>PySpark StructType schema generator from PostgreSQL table schema</h1> | ||
|
||
git clone https://github.com/yourusername/spark-postgres-schema-generator.git | ||
Install the required modules: | ||
<p>This Python program generates a PySpark StructType schema from a PostgreSQL table schema. The program connects to a PostgreSQL database, reads the schema of the specified table, and maps the PostgreSQL data types to the corresponding PySpark data types.</p> | ||
|
||
pip install pyspark psycopg2 | ||
Open the generate_spark_schema.py file in your preferred text editor. | ||
<h2>Prerequisites</h2> | ||
|
||
Update the following variables to match your PostgreSQL database connection details: | ||
<ul> | ||
<li>Python 3.x</li> | ||
<li>PySpark</li> | ||
<li>psycopg2</li> | ||
<li>A PostgreSQL database with a table to generate the schema from</li> | ||
</ul> | ||
|
||
<h2>Usage</h2> | ||
|
||
host = "localhost" | ||
database = "mydb" | ||
user = "myuser" | ||
password = "mypassword" | ||
Update the schema_name variable to match the name of the PostgreSQL schema you want to generate a Spark schema for: | ||
<ol> | ||
<li>Clone the repository: <code>git clone https://github.com/username/repo.git</code></li> | ||
<li>Navigate to the directory: <code>cd repo</code></li> | ||
<li>Edit the <code>config.ini</code> file to specify the PostgreSQL database connection parameters and the name of the table to generate the schema from</li> | ||
<li>Run the program: <code>python generate_schema.py</code></li> | ||
</ol> | ||
|
||
<h2>Configuring the program</h2> | ||
|
||
python generate_spark_schema.py | ||
The script will print the generated Spark schema to the console. | ||
<p>The program can be configured by editing the <code>config.ini</code> file. The file contains the following parameters:</p> | ||
|
||
Supported PostgreSQL Data Types | ||
The script supports the following PostgreSQL data types: | ||
<ul> | ||
<li><code>host</code>: the hostname or IP address of the PostgreSQL server</li> | ||
<li><code>port</code>: the port number of the PostgreSQL server</li> | ||
<li><code>database</code>: the name of the PostgreSQL database</li> | ||
<li><code>user</code>: the username to connect to the PostgreSQL database</li> | ||
<li><code>password</code>: the password to connect to the PostgreSQL database</li> | ||
<li><code>table_name</code>: the name of the table to generate the schema from</li> | ||
</ul> | ||
|
||
ARRAY | ||
bigint | ||
boolean | ||
bytea | ||
character | ||
character varying | ||
date | ||
double precision | ||
integer | ||
json | ||
name | ||
numeric | ||
oid | ||
smallint | ||
text | ||
timestamp with time zone | ||
timestamp without time zone | ||
<h2>Example output</h2> | ||
|
||
<p>The program generates output similar to the following:</p> | ||
|
||
Notes | ||
The script assumes that any PostgreSQL column with a NOT NULL constraint is required in the Spark schema, and any column without a NOT NULL constraint is nullable in the Spark schema. | ||
The script assumes that any PostgreSQL array column contains string elements. | ||
The script assumes that any PostgreSQL numeric column has a specified precision and scale. If your database uses the default precision and scale for numeric columns, you may need to modify the script to handle this case. | ||
The script assumes that the PostgreSQL schema name you provide has access to the tables you want to generate a Spark schema for. If you need to generate a schema for tables in a different schema, you will need to update the script accordingly. | ||
<pre><code>StructType(List(StructField(id,IntegerType,true),StructField(name,StringType,true),StructField(age,IntegerType,true)))</code></pre> | ||
|
||
License | ||
This project is licensed under the MIT License. See the LICENSE file for details. | ||
<h2>Contributing</h2> | ||
|
||
<p>Contributions are welcome! Please submit a pull request if you'd like to contribute.</p> | ||
|
||
<h2>License</h2> | ||
|
||
<p>This program is licensed under the MIT license. See the <a href="LICENSE.md">LICENSE.md</a> file for details.</p> | ||
|
||
</body> | ||
|
||
</html> |