Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

extract dynamic vars #3

Merged
merged 1 commit into from
Jun 20, 2023
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
9 changes: 5 additions & 4 deletions example.py
Original file line number Diff line number Diff line change
@@ -1,7 +1,8 @@
from models.vicuna_v1_7b_fp16 import Module as Vicuna
from mlc_bench.extraction import extract_from_relax
from mlc_bench.extraction import extract_from_relax, extract

if __name__ == "__main__":
extract_from_relax(
mod=Vicuna, model_name="vicuna_v1_7b_fp_16", file_path="./extracted"
)
# extract_from_relax(
# mod=Vicuna, model_name="vicuna_v1_7b_fp_16", file_path="./extracted"
# )
extract(mod=Vicuna)
37 changes: 34 additions & 3 deletions mlc_bench/extraction.py
Original file line number Diff line number Diff line change
Expand Up @@ -142,6 +142,16 @@ def extract_from_relax(mod: tvm.ir.IRModule, model_name: str, file_path: str):
)


def extract_shape(arg) -> List:
if isinstance(arg, (tuple, list, tvm.relax.Tuple)):
r = []
for a in arg:
r.extend(extract_shape(a))
return r
else:
return [arg.struct_info]


def prim_func_usage_gen(mod: tvm.ir.IRModule):
for gv, func in mod.functions.items():
if isinstance(func, tvm.relax.Function):
Expand All @@ -152,12 +162,31 @@ def prim_func_usage_gen(mod: tvm.ir.IRModule):
functor = raw_args[0]
if isinstance(functor, tvm.ir.GlobalVar):
if isinstance(mod.functions[functor], tvm.tir.PrimFunc):
args = [arg.struct_info for arg in raw_args[1:]] + [
binding.value.struct_info
]
args = extract_shape(raw_args[1:]) + extract_shape(binding.value)
yield gv, functor, args


def extract_dynamic_var(func_dict):
dynamic_var_dict = {}
for gv in func_dict:
print(gv)
dynamic_var_dict[gv] = set()
for functor in func_dict[gv]:
for arg_list, _ in func_dict[gv][functor]:
for arg in arg_list:
if isinstance(arg, tvm.relax.TensorStructInfo):
for v in arg.shape.values:
if isinstance(v, tvm.tir.Var):
dynamic_var_dict[gv].add((v.name, v.dtype))
elif isinstance(arg, tvm.relax.ShapeStructInfo):
for v in arg.values:
if isinstance(v, tvm.tir.Var):
dynamic_var_dict[gv].add((v.name, v.dtype))
else:
raise NotImplementedError
return dynamic_var_dict


def extract(mod: tvm.ir.IRModule):
def update_records(records, new_args):
for i, (args, count) in enumerate(records):
Expand All @@ -178,8 +207,10 @@ def update_records(records, new_args):
prim_func_dict[functor] = []
update_records(prim_func_dict[functor], args)
update_records(relax_func_dict[gv][functor], args)
dynamic_var_dict = extract_dynamic_var(relax_func_dict)
print(prim_func_dict)
print(relax_func_dict)
print(dynamic_var_dict)


if __name__ == "__main__":
Expand Down