Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Use an async checkpointer to initialize JDI in tests #1170

Open
wants to merge 1 commit into
base: main
Choose a base branch
from
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
5 changes: 1 addition & 4 deletions MaxText/layers/linears.py
Original file line number Diff line number Diff line change
Expand Up @@ -432,10 +432,7 @@ def gmm(inputs, kernel, group_sizes):
)
else:
if self.quant is not None:
raise NotImplementedError(
"Quantization is not yet supported with ragged_dot, please set"
" megablox=True"
)
raise NotImplementedError("Quantization is not yet supported with ragged_dot, please set" " megablox=True")
output = jax.lax.ragged_dot(
lhs=inputs,
rhs=kernel,
Expand Down
9 changes: 5 additions & 4 deletions end_to_end/tpu/gemma/7b/2_test_gemma.sh
Original file line number Diff line number Diff line change
Expand Up @@ -36,16 +36,17 @@ export RUN_NAME=unscanned_chkpt
# We defined path to unscanned checkpoint created in 1_test_gemma.sh
export UNSCANNED_CKPT_PATH=${BASE_OUTPUT_PATH}/${RUN_NAME}/checkpoints/0/items

export ASYNC_CHECKPOINTING=True # True so that the jax distributed system is initialized
# We run decoding on the `UNSCANNED_CKPT_PATH` for efficient decoding on the unscanned version of the checkpoint. Note that this checkpoint only has parameters and no optimizer state.
# So, we use it by specifying`load_parameters_path=${CONVERTED_CHECKPOINT}`
python MaxText/decode.py MaxText/configs/base.yml base_output_directory=gs://runner-maxtext-logs tokenizer_path=assets/tokenizer.gemma load_parameters_path=${UNSCANNED_CKPT_PATH} per_device_batch_size=1 run_name=runner_$(date +%Y-%m-%d-%H-%M) max_prefill_predict_length=4 max_target_length=16 dataset_type=synthetic steps=10 async_checkpointing=false scan_layers=false model_name=gemma-7b attention=dot_product prompt="I love to"
python MaxText/decode.py MaxText/configs/base.yml base_output_directory=gs://runner-maxtext-logs tokenizer_path=assets/tokenizer.gemma load_parameters_path=${UNSCANNED_CKPT_PATH} per_device_batch_size=1 run_name=runner_$(date +%Y-%m-%d-%H-%M) max_prefill_predict_length=4 max_target_length=16 dataset_type=synthetic steps=10 async_checkpointing=${ASYNC_CHECKPOINTING} scan_layers=false model_name=gemma-7b attention=dot_product prompt="I love to"

# We can also run decoding (albeit in a bit unoptimized way) by using the scanned converted checkpoint located at `CONVERTED_CHECKPOINT`. Note again that this checkpoint only has parameters and no optimizer state. So, we use it by specifying`load_parameters_path=${CONVERTED_CHECKPOINT}`
python MaxText/decode.py MaxText/configs/base.yml base_output_directory=gs://runner-maxtext-logs tokenizer_path=assets/tokenizer.gemma load_parameters_path=${CONVERTED_CHECKPOINT} per_device_batch_size=1 run_name=runner_$(date +%Y-%m-%d-%H-%M) max_prefill_predict_length=4 max_target_length=16 dataset_type=synthetic steps=10 async_checkpointing=false model_name=gemma-7b attention=dot_product prompt="I love to"
python MaxText/decode.py MaxText/configs/base.yml base_output_directory=gs://runner-maxtext-logs tokenizer_path=assets/tokenizer.gemma load_parameters_path=${CONVERTED_CHECKPOINT} per_device_batch_size=1 run_name=runner_$(date +%Y-%m-%d-%H-%M) max_prefill_predict_length=4 max_target_length=16 dataset_type=synthetic steps=10 async_checkpointing=${ASYNC_CHECKPOINTING} model_name=gemma-7b attention=dot_product prompt="I love to"

# Alternatively, we skip to running finetuning by using the scanned converted checkpoint located at `CONVERTED_CHECKPOINT`. Again, we use it by specifying`load_parameters_path=${CONVERTED_CHECKPOINT}`. Note that scanned checkpoint helps with efficient finetuning
export FINETUNE_RUN_NAME=runner_finetune
python MaxText/train.py MaxText/configs/base.yml base_output_directory=${BASE_OUTPUT_PATH} dataset_path=${DATASET_PATH} tokenizer_path=assets/tokenizer.gemma load_parameters_path=${CONVERTED_CHECKPOINT} per_device_batch_size=1 run_name=${FINETUNE_RUN_NAME} max_target_length=8192 steps=10 async_checkpointing=false model_name=gemma-7b checkpoint_period=5
python MaxText/train.py MaxText/configs/base.yml base_output_directory=${BASE_OUTPUT_PATH} dataset_path=${DATASET_PATH} tokenizer_path=assets/tokenizer.gemma load_parameters_path=${CONVERTED_CHECKPOINT} per_device_batch_size=1 run_name=${FINETUNE_RUN_NAME} max_target_length=8192 steps=10 async_checkpointing=${ASYNC_CHECKPOINTING} model_name=gemma-7b checkpoint_period=5

# We also run pre-training, this is similar to the finetuning command except we don't pass any checkpoint directory to load parameters from
python MaxText/train.py MaxText/configs/base.yml base_output_directory=${BASE_OUTPUT_PATH} dataset_path=${DATASET_PATH} tokenizer_path=assets/tokenizer.gemma per_device_batch_size=1 run_name=runner_$(date +%Y-%m-%d-%H-%M) max_target_length=8192 steps=5 enable_checkpointing=false model_name=gemma-7b
Expand All @@ -57,7 +58,7 @@ export PARAM_RUN_NAME=param_chkpt
python MaxText/generate_param_only_checkpoint.py MaxText/configs/base.yml base_output_directory=${BASE_OUTPUT_PATH} load_full_state_path=${BASE_OUTPUT_PATH}/${FINETUNE_RUN_NAME}/checkpoints/5/items run_name=${PARAM_RUN_NAME} model_name='gemma-7b' force_unroll=true

# Now, run decoding on the checkpoint generated from our finetune run.
python MaxText/decode.py MaxText/configs/base.yml base_output_directory=gs://runner-maxtext-logs tokenizer_path=assets/tokenizer.gemma load_parameters_path=${BASE_OUTPUT_PATH}/${PARAM_RUN_NAME}/checkpoints/0/items per_device_batch_size=1 run_name=runner_$(date +%Y-%m-%d-%H-%M) max_prefill_predict_length=4 max_target_length=16 dataset_type=synthetic steps=10 async_checkpointing=false scan_layers=false model_name=gemma-7b attention=dot_product prompt="I love to"
python MaxText/decode.py MaxText/configs/base.yml base_output_directory=gs://runner-maxtext-logs tokenizer_path=assets/tokenizer.gemma load_parameters_path=${BASE_OUTPUT_PATH}/${PARAM_RUN_NAME}/checkpoints/0/items per_device_batch_size=1 run_name=runner_$(date +%Y-%m-%d-%H-%M) max_prefill_predict_length=4 max_target_length=16 dataset_type=synthetic steps=10 async_checkpointing=${ASYNC_CHECKPOINTING} scan_layers=false model_name=gemma-7b attention=dot_product prompt="I love to"

# We recommend training/finetuning Gemma on v5e-256 using the following sharding strategy to achieve optimal performance.
# This below command does Ahead Of Time Cross Compilation (https://github.com/google/maxtext?tab=readme-ov-file#ahead-of-time-compilation-aot) for our recommended v5e-256 configuration for Gemma 7B.
Expand Down
12 changes: 7 additions & 5 deletions end_to_end/tpu/llama2/70b/2_test_llama2_70b.sh
Original file line number Diff line number Diff line change
Expand Up @@ -40,16 +40,18 @@ export RUN_NAME=unscanned_chkpt
# We defined path to unscanned checkpoint created in 1_test_llama2_70b.sh
export UNSCANNED_CKPT_PATH=${BASE_OUTPUT_PATH}/${RUN_NAME}/checkpoints/0/items

export ASYNC_CHECKPOINTING=true # True so that jax distributed system is initialized

# We run decoding on the `UNSCANNED_CKPT_PATH` for efficient decoding on the unscanned version of the checkpoint. Note that this checkpoint only has parameters and no optimizer state.
# So, we use it by specifying`load_parameters_path=${CONVERTED_CHECKPOINT}`
python MaxText/decode.py MaxText/configs/base.yml base_output_directory=gs://runner-maxtext-logs tokenizer_path=assets/tokenizer.llama2 load_parameters_path=${UNSCANNED_CKPT_PATH} per_device_batch_size=1 run_name=runner_$(date +%Y-%m-%d-%H-%M) max_prefill_predict_length=4 max_target_length=16 dataset_type=synthetic async_checkpointing=false scan_layers=false model_name=${MODEL_VARIATION} attention=dot_product prompt="I love to"
python MaxText/decode.py MaxText/configs/base.yml base_output_directory=gs://runner-maxtext-logs tokenizer_path=assets/tokenizer.llama2 load_parameters_path=${UNSCANNED_CKPT_PATH} per_device_batch_size=1 run_name=runner_$(date +%Y-%m-%d-%H-%M) max_prefill_predict_length=4 max_target_length=16 dataset_type=synthetic async_checkpointing=${ASYNC_CHECKPOINTING} scan_layers=false model_name=${MODEL_VARIATION} attention=dot_product prompt="I love to"

# We can also run decoding (albeit in a bit unoptimized way) by using the scanned converted checkpoint located at `CONVERTED_CHECKPOINT`. Note again that this checkpoint only has parameters and no optimizer state. So, we use it by specifying`load_parameters_path=${CONVERTED_CHECKPOINT}`
python MaxText/decode.py MaxText/configs/base.yml base_output_directory=gs://runner-maxtext-logs tokenizer_path=assets/tokenizer.llama2 load_parameters_path=${CONVERTED_CHECKPOINT} per_device_batch_size=1 run_name=runner_$(date +%Y-%m-%d-%H-%M) max_prefill_predict_length=4 max_target_length=16 dataset_type=synthetic async_checkpointing=false model_name=${MODEL_VARIATION} attention=dot_product prompt="I love to"
python MaxText/decode.py MaxText/configs/base.yml base_output_directory=gs://runner-maxtext-logs tokenizer_path=assets/tokenizer.llama2 load_parameters_path=${CONVERTED_CHECKPOINT} per_device_batch_size=1 run_name=runner_$(date +%Y-%m-%d-%H-%M) max_prefill_predict_length=4 max_target_length=16 dataset_type=synthetic async_checkpointing=${ASYNC_CHECKPOINTING} model_name=${MODEL_VARIATION} attention=dot_product prompt="I love to"

# Alternatively, we skip to running finetuning by using the scanned converted checkpoint located at `CONVERTED_CHECKPOINT`. Again, we use it by specifying`load_parameters_path=${CONVERTED_CHECKPOINT}`. Note that scanned checkpoint helps with efficient finetuning
export FINETUNE_RUN_NAME=runner_finetune
python MaxText/train.py MaxText/configs/base.yml base_output_directory=${BASE_OUTPUT_PATH} dataset_path=${DATASET_PATH} tokenizer_path=assets/tokenizer.llama2 load_parameters_path=${CONVERTED_CHECKPOINT} per_device_batch_size=1 run_name=${FINETUNE_RUN_NAME} steps=10 async_checkpointing=false model_name=${MODEL_VARIATION} checkpoint_period=5
python MaxText/train.py MaxText/configs/base.yml base_output_directory=${BASE_OUTPUT_PATH} dataset_path=${DATASET_PATH} tokenizer_path=assets/tokenizer.llama2 load_parameters_path=${CONVERTED_CHECKPOINT} per_device_batch_size=1 run_name=${FINETUNE_RUN_NAME} steps=10 async_checkpointing=${ASYNC_CHECKPOINTING} model_name=${MODEL_VARIATION} checkpoint_period=5

# We also run pre-training, this is similar to the finetuning command except we don't pass any checkpoint directory to load parameters from
python MaxText/train.py MaxText/configs/base.yml base_output_directory=${BASE_OUTPUT_PATH} dataset_path=${DATASET_PATH} tokenizer_path=assets/tokenizer.llama2 per_device_batch_size=1 run_name=runner_$(date +%Y-%m-%d-%H-%M) steps=5 enable_checkpointing=false model_name=${MODEL_VARIATION}
Expand All @@ -61,7 +63,7 @@ export PARAM_RUN_NAME=param_chkpt
python MaxText/generate_param_only_checkpoint.py MaxText/configs/base.yml base_output_directory=${BASE_OUTPUT_PATH} load_full_state_path=${BASE_OUTPUT_PATH}/${FINETUNE_RUN_NAME}/checkpoints/5/items run_name=${PARAM_RUN_NAME} model_name=${MODEL_VARIATION} force_unroll=true

# Now, run decoding on the checkpoint generated from our finetune run.
python MaxText/decode.py MaxText/configs/base.yml base_output_directory=gs://runner-maxtext-logs tokenizer_path=assets/tokenizer.llama2 load_parameters_path=${BASE_OUTPUT_PATH}/${PARAM_RUN_NAME}/checkpoints/0/items per_device_batch_size=1 run_name=runner_$(date +%Y-%m-%d-%H-%M) max_prefill_predict_length=4 max_target_length=16 dataset_type=synthetic steps=10 async_checkpointing=false scan_layers=false model_name=${MODEL_VARIATION} attention=dot_product prompt="I love to"
python MaxText/decode.py MaxText/configs/base.yml base_output_directory=gs://runner-maxtext-logs tokenizer_path=assets/tokenizer.llama2 load_parameters_path=${BASE_OUTPUT_PATH}/${PARAM_RUN_NAME}/checkpoints/0/items per_device_batch_size=1 run_name=runner_$(date +%Y-%m-%d-%H-%M) max_prefill_predict_length=4 max_target_length=16 dataset_type=synthetic steps=10 async_checkpointing=${ASYNC_CHECKPOINTING} scan_layers=false model_name=${MODEL_VARIATION} attention=dot_product prompt="I love to"

# We also test whether the forward pass logits match the golden logits for Llama2-70b
python3 MaxText/tests/forward_pass_logit_checker.py --atol=0.2 --rtol=0.2 MaxText/configs/base.yml base_output_directory=${BASE_OUTPUT_PATH} load_parameters_path=${UNSCANNED_CKPT_PATH} run_name=forward_pass_test per_device_batch_size=1 model_name=llama2-70b ici_tensor_parallelism=4 max_prefill_predict_length=4 max_target_length=4 dataset_type=synthetic dtype=float32 scan_layers=false async_checkpointing=false
python3 MaxText/tests/forward_pass_logit_checker.py --atol=0.2 --rtol=0.2 MaxText/configs/base.yml base_output_directory=${BASE_OUTPUT_PATH} load_parameters_path=${UNSCANNED_CKPT_PATH} run_name=forward_pass_test per_device_batch_size=1 model_name=llama2-70b ici_tensor_parallelism=4 max_prefill_predict_length=4 max_target_length=4 dataset_type=synthetic dtype=float32 scan_layers=false async_checkpointing=${ASYNC_CHECKPOINTING}
Loading