Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Support Turing's externalsampler interface, return Transition instead of raw samples. #1

Merged
merged 6 commits into from
May 24, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension


Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
4 changes: 2 additions & 2 deletions .github/workflows/CI.yml
Original file line number Diff line number Diff line change
Expand Up @@ -19,8 +19,8 @@ jobs:
fail-fast: false
matrix:
version:
- '1.6'
- '1.9'
- '1.7'
- '1.10'
- 'nightly'
os:
- ubuntu-latest
Expand Down
16 changes: 13 additions & 3 deletions Project.toml
Original file line number Diff line number Diff line change
@@ -1,6 +1,6 @@
name = "SliceSampling"
uuid = "43f4d3e8-9711-4a8c-bd1b-03ac73a255cf"
version = "0.1.0"
version = "0.2.0"

[deps]
AbstractMCMC = "80f14c24-f653-4e6a-9b94-39d6b0f70001"
Expand All @@ -9,20 +9,30 @@ Distributions = "31c24e10-a181-5473-b8eb-7969acd0382f"
FillArrays = "1a297f60-69ca-5386-bcde-b61e274b549b"
LogDensityProblems = "6fdf6af0-433a-55f7-b3ed-c6c6e0b8df7c"
Random = "9a3f8284-a2c9-5f02-9a11-845980a1fd5c"
Requires = "ae029012-a4dd-5104-9daa-d747884805df"
SimpleUnPack = "ce78b400-467f-4804-87d8-8f486da07d0a"

[weakdeps]
Turing = "fce5fe82-541a-59a6-adf8-730c64b5f9a0"

[extensions]
SliceSamplingTuringExt = ["Turing"]

[compat]
AbstractMCMC = "5"
AbstractMCMC = "4, 5"
Accessors = "0.1"
Distributions = "0.25"
FillArrays = "1"
LogDensityProblems = "2"
Random = "1"
Requires = "1"
SimpleUnPack = "1"
julia = "1.6"
Turing = "0.31, 0.32"
julia = "1.7"

[extras]
Test = "8dfed614-e22c-5e08-85e1-65c5234f0b40"
Turing = "fce5fe82-541a-59a6-adf8-730c64b5f9a0"

[targets]
test = ["Test"]
1 change: 1 addition & 0 deletions docs/Project.toml
Original file line number Diff line number Diff line change
Expand Up @@ -11,3 +11,4 @@ Random = "9a3f8284-a2c9-5f02-9a11-845980a1fd5c"
SliceSampling = "43f4d3e8-9711-4a8c-bd1b-03ac73a255cf"
StableRNGs = "860ef19b-820b-49d6-a774-d7a799459cd3"
Statistics = "10745b16-79ce-11e8-11f9-7d13ad32a3b2"
Turing = "fce5fe82-541a-59a6-adf8-730c64b5f9a0"
1 change: 0 additions & 1 deletion docs/make.jl
Original file line number Diff line number Diff line change
Expand Up @@ -17,7 +17,6 @@ makedocs(;
pages=[
"Home" => "index.md",
"General Usage" => "general.md",
#"Benchmarks" => "benchmarks.md",
"Univariate Slice Sampling" => "univariate_slice.md",
"Latent Slice Sampling" => "latent_slice.md"
],
Expand Down
26 changes: 26 additions & 0 deletions docs/src/general.md
Original file line number Diff line number Diff line change
Expand Up @@ -4,6 +4,26 @@
This package implements the `AbstractMCMC` [interface](https://github.com/TuringLang/AbstractMCMC.jl).
`AbstractMCMC` provides a unifying interface for MCMC algorithms applied to [LogDensityProblems](https://github.com/tpapp/LogDensityProblems.jl).

## Drawing Samples From `Turing` Models
`SliceSampling.jl` can be used to sample from [Turing](https://github.com/TuringLang/Turing.jl) models through `Turing`'s `externalsampler` interface.
See the following example of using the [latent slice sampler](@ref latent):

```@example turing
using Distributions
using Turing
using SliceSampling

@model function demo()
s ~ InverseGamma(3, 3)
m ~ Normal(0, sqrt(s))
end

sampler = LatentSlice(2)
n_samples = 10000
model = demo()
sample(model, externalsampler(sampler), n_samples; initial_params=[1.0, 0.0])
```

## Drawing Samples

For drawing samples using the algorithms provided by `SliceSampling`, the user only needs to call:
Expand All @@ -14,6 +34,12 @@ sample([rng,] model, slice, N; initial_params)
- `model`: A model implementing the `LogDensityProblems` interface.
- `N`: The number of samples

The output is a `SliceSampling.Transition` object, which contains the following:
```@docs
SliceSampling.Transition
```


For the keyword arguments, `SliceSampling` allows:
- `initial_params`: The intial state of the Markov chain (default: `nothing`).

Expand Down
2 changes: 1 addition & 1 deletion docs/src/latent_slice.md
Original file line number Diff line number Diff line change
@@ -1,5 +1,5 @@

# Latent Slice Sampling
# [Latent Slice Sampling](@id latent)

## Introduction
Latent slice sampling is a recent vector-valued slice sampling algorithm proposed by Li and Walker[^LW2023].
Expand Down
14 changes: 14 additions & 0 deletions ext/SliceSamplingTuringExt.jl
Original file line number Diff line number Diff line change
@@ -0,0 +1,14 @@

module SliceSamplingTuringExt

if isdefined(Base, :get_extension)
using SliceSampling: Transition
using Turing: Turing
else
using ..SliceSampling: Transition
using ..Turing: Turing
end

Turing.Inference.getparams(::Turing.DynamicPPL.Model, sample::Transition) = sample.params

end
35 changes: 35 additions & 0 deletions src/SliceSampling.jl
Original file line number Diff line number Diff line change
Expand Up @@ -16,6 +16,27 @@ export sample, MCMCThreads, MCMCDistributed, MCMCSerial
# Interfaces
abstract type AbstractSliceSampling <: AbstractMCMC.AbstractSampler end

"""
struct Transition

Struct containing the results of the transition.

# Fields
- `params`: Samples generated by the transition.
- `lp::Real`: Log-target density of the samples.
- `info::NamedTuple`: Named tuple containing information about the transition.
"""
struct Transition{P, L <: Real, I <: NamedTuple}
"current state of the slice sampling chain"
params::P

"log density of the current state"
lp::L

"information generated from the sampler"
info::I
end

"""
initial_sample(rng, model)

Expand Down Expand Up @@ -46,4 +67,18 @@ export LatentSlice

include("latent.jl")

# Turing Compatibility

if !isdefined(Base, :get_extension)
using Requires
end

@static if !isdefined(Base, :get_extension)
function __init__()
@require Turing = "fce5fe82-541a-59a6-adf8-730c64b5f9a0" include(
"../ext/SliceSamplingTuringExt.jl"
)
end
end

end
29 changes: 12 additions & 17 deletions src/gibbs.jl
Original file line number Diff line number Diff line change
@@ -1,4 +1,9 @@

struct GibbsSliceState{T <: Transition}
"Current [`Transition`](@ref)."
transition::T
end

struct GibbsObjective{Model, Idx <: Integer, Vec <: AbstractVector}
model::Model
idx ::Idx
Expand All @@ -10,17 +15,6 @@ function LogDensityProblems.logdensity(gibbs::GibbsObjective, θi)
LogDensityProblems.logdensity(model, (@set θ[idx] = θi))
end

struct SliceState{P, L <: Real, I <: NamedTuple}
"current state of the slice sampling chain"
params::P

"log density of the current state"
lp::L

"information generated from the sampler"
info::I
end

function AbstractMCMC.step(rng ::Random.AbstractRNG,
model ::AbstractMCMC.LogDensityModel,
sampler::AbstractGibbsSliceSampling;
Expand All @@ -33,14 +27,15 @@ function AbstractMCMC.step(rng ::Random.AbstractRNG,
end
θ = isnothing(initial_params) ? initial_sample(rng, logdensitymodel) : initial_params
lp = LogDensityProblems.logdensity(logdensitymodel, θ)
return θ, SliceState(θ, lp, NamedTuple())
t = Transition(θ, lp, NamedTuple())
return t, GibbsSliceState(t)
end

function AbstractMCMC.step(
rng ::Random.AbstractRNG,
model ::AbstractMCMC.LogDensityModel,
sampler::AbstractGibbsSliceSampling,
state ::SliceState;
state ::GibbsSliceState;
kwargs...,
)
logdensitymodel = model.logdensity
Expand All @@ -49,8 +44,8 @@ function AbstractMCMC.step(
else
sampler.window
end
ℓp = state.lp
θ = copy(state.params)
ℓp = state.transition.lp
θ = copy(state.transition.params)

total_props = 0
for idx in shuffle(rng, 1:length(θ))
Expand All @@ -61,6 +56,6 @@ function AbstractMCMC.step(
total_props += props
θ[idx] = θ′idx
end

θ, SliceState(θ, ℓp, (num_proposals=total_props,))
t = Transition(θ, ℓp, (num_proposals=total_props,))
t, GibbsSliceState(t)
end
23 changes: 13 additions & 10 deletions src/latent.jl
Original file line number Diff line number Diff line change
Expand Up @@ -11,11 +11,12 @@ struct LatentSlice{B <: Real} <: AbstractSliceSampling
beta::B
end

struct LatentSliceState{V <: AbstractVector, L <: Real, I <: NamedTuple}
y ::V
s ::V
lp ::L
info::I
struct LatentSliceState{T <: Transition, S <: AbstractVector}
"Current [`Transition`](@ref)."
transition ::T

"Auxiliary variables for adapting the slice window (\$s\$ in the original paper[^LW2023])"
sliceparams::S
end

function AbstractMCMC.step(rng ::Random.AbstractRNG,
Expand All @@ -29,7 +30,8 @@ function AbstractMCMC.step(rng ::Random.AbstractRNG,
d = length(y)
lp = LogDensityProblems.logdensity(logdensitymodel, y)
s = convert(Vector{eltype(y)}, rand(rng, Gamma(2, 1/β), d))
return y, LatentSliceState(y, s, lp, NamedTuple())
t = Transition(y, lp, NamedTuple())
return t, LatentSliceState(t, s)
end

function AbstractMCMC.step(
Expand All @@ -42,9 +44,9 @@ function AbstractMCMC.step(
logdensitymodel = model.logdensity

β = sampler.beta
ℓp = state.lp
y = copy(state.y)
s = copy(state.s)
ℓp = state.transition.lp
y = state.transition.params
s = state.sliceparams
d = length(y)
ℓw = ℓp - Random.randexp(rng, eltype(y))

Expand Down Expand Up @@ -76,5 +78,6 @@ function AbstractMCMC.step(
end
end
s = β*randexp(rng, eltype(y), d) + 2*abs.(l - y)
y, LatentSliceState(y, s, ℓp, NamedTuple())
t = Transition(y, ℓp, NamedTuple())
t, LatentSliceState(t, s)
end
4 changes: 3 additions & 1 deletion test/Project.toml
Original file line number Diff line number Diff line change
Expand Up @@ -7,14 +7,16 @@ MCMCTesting = "9963b6a1-5d46-439c-8efc-3a487843c7fa"
Random = "9a3f8284-a2c9-5f02-9a11-845980a1fd5c"
StableRNGs = "860ef19b-820b-49d6-a774-d7a799459cd3"
Test = "8dfed614-e22c-5e08-85e1-65c5234f0b40"
Turing = "fce5fe82-541a-59a6-adf8-730c64b5f9a0"

[compat]
AbstractMCMC = "5"
AbstractMCMC = "4, 5"
Accessors = "0.1"
Distributions = "0.25"
LogDensityProblems = "2"
MCMCTesting = "0.3"
Random = "1"
StableRNGs = "1"
Test = "1"
Turing = "0.31"
julia = "1.6"
41 changes: 36 additions & 5 deletions test/runtests.jl
Original file line number Diff line number Diff line change
Expand Up @@ -6,6 +6,7 @@ using LogDensityProblems
using MCMCTesting
using Random
using Test
using Turing
using StableRNGs

using SliceSampling
Expand Down Expand Up @@ -37,8 +38,8 @@ function MCMCTesting.markovchain_transition(
)
model′ = AbstractMCMC.LogDensityModel(@set model.y = y)
_, init_state = AbstractMCMC.step(rng, model′, sampler; initial_params=copy(θ))
θ′, _ = AbstractMCMC.step(rng, model′, sampler, init_state)
θ′
transition, _ = AbstractMCMC.step(rng, model′, sampler, init_state)
transition.params
end

function LogDensityProblems.logdensity(model::Model{F, V}, θ) where {F <: Real, V}
Expand Down Expand Up @@ -91,11 +92,13 @@ end

rng = StableRNG(1)
_, init_state = AbstractMCMC.step(rng, model′, sampler; initial_params=copy(θ))
θ′, _ = AbstractMCMC.step(rng, model′, sampler, init_state)
transition, _ = AbstractMCMC.step(rng, model′, sampler, init_state)
θ′ = transition.params

rng = StableRNG(1)
_, init_state = AbstractMCMC.step(rng, model′, sampler; initial_params=copy(θ))
θ′′, _ = AbstractMCMC.step(rng, model′, sampler, init_state)
transition, _ = AbstractMCMC.step(rng, model′, sampler, init_state)
θ′′ = transition.params
@test θ′ == θ′′
end

Expand All @@ -109,7 +112,8 @@ end
@test eltype(y) == type

_, init_state = AbstractMCMC.step(rng, model′, sampler; initial_params=copy(θ))
θ′, _ = AbstractMCMC.step(rng, model′, sampler, init_state)
transition, _ = AbstractMCMC.step(rng, model′, sampler, init_state)
θ′ = transition.params

@test eltype(θ′) == type
end
Expand All @@ -127,3 +131,30 @@ end
end
end
end

@testset "turing compatibility" begin
@model function demo()
s ~ InverseGamma(2, 3)
m ~ Normal(0, sqrt(s))
1.5 ~ Normal(m, sqrt(s))
2.0 ~ Normal(m, sqrt(s))
end

n_samples = 1000
model = demo()

@testset for sampler in [
Slice(1),
SliceSteppingOut(1),
SliceDoublingOut(1),
LatentSlice(5),
]
chain = sample(
model,
externalsampler(sampler),
n_samples;
initial_params=[1.0, 0.0],
progress=false,
)
end
end
Loading