Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Code cleanup and proper logging for pareto and clustering #1180

Merged
merged 6 commits into from
Dec 6, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
31 changes: 31 additions & 0 deletions python/src/robyn/common/logger.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,31 @@
# pyre-strict

import logging

import pandas as pd


class RobynLogger:

@staticmethod
def log_df(
logger,
df: pd.DataFrame,
logLevel: int = logging.DEBUG,
print_head: bool = False,
):
"""
Log the shape and first few rows of a DataFrame.

Args:
df (pd.DataFrame): DataFrame to log.
name (str): Name of the DataFrame.
"""
if df is None:
logger.log(logLevel, "DataFrame is None")
return

logger.log(logLevel, f"DataFrame columns: {df.columns}")
logger.log(logLevel, f"DataFrame Shape: {df.shape}")
if print_head:
logger.log(logLevel, f"DataFrame Head: {df.head()}")
71 changes: 20 additions & 51 deletions python/src/robyn/modeling/clustering/cluster_builder.py
Original file line number Diff line number Diff line change
Expand Up @@ -7,6 +7,7 @@
import re
import numpy as np
import pandas as pd
from robyn.common.logger import RobynLogger
from robyn.modeling.clustering.clustering_config import ClusterBy, ClusteringConfig
from robyn.data.entities.enums import DependentVarType
from robyn.modeling.entities.clustering_results import (
Expand Down Expand Up @@ -71,7 +72,7 @@ def cluster_models(self, config: ClusteringConfig) -> ClusteredResult:
aux = self.pareto_result.media_vec_collect.columns
type_index = aux.get_loc("type")
config.all_media = aux[1:type_index].tolist()
self.logger.debug("Auto-detected media channels: %s", config.all_media)
self.logger.info("Auto-detected media channels: %s", config.all_media)

self.logger.info("Clustering by: %s", config.cluster_by)
if config.cluster_by == ClusterBy.HYPERPARAMETERS:
Expand All @@ -84,6 +85,7 @@ def cluster_models(self, config: ClusteringConfig) -> ClusteredResult:
self.logger.error(f"Invalid clustering method: {config.cluster_by}")
raise ValueError("Invalid clustering method")

RobynLogger.log_df(self.logger, df)
ignored_columns = [
"sol_id",
"mape",
Expand Down Expand Up @@ -139,6 +141,7 @@ def cluster_models(self, config: ClusteringConfig) -> ClusteredResult:
self.logger.debug("Selecting top solutions")
top_solutions = self._select_top_solutions(result.cluster_data, config)
self.logger.info(f"Selected {len(top_solutions)} top solutions")
RobynLogger.log_df(self.logger, top_solutions, print_head=True)

self.logger.debug("Calculating confidence intervals")
ci_results: ConfidenceIntervalCollectionData = (
Expand Down Expand Up @@ -170,13 +173,15 @@ def cluster_models(self, config: ClusteringConfig) -> ClusteredResult:
ci_results, config
),
)
clustered_data = result.cluster_data.assign(
top_sol=result.cluster_data["sol_id"].isin(top_solutions["sol_id"]),
cluster=result.cluster_data["cluster"].astype(int),
)

RobynLogger.log_df(self.logger, clustered_data)
self.logger.info("Clustering process completed successfully")
return ClusteredResult(
cluster_data=result.cluster_data.assign(
top_sol=result.cluster_data["sol_id"].isin(top_solutions["sol_id"]),
cluster=result.cluster_data["cluster"].astype(int),
),
cluster_data=clustered_data,
top_solutions=top_solutions,
wss=result.wss,
cluster_ci=cluster_ci,
Expand Down Expand Up @@ -454,6 +459,9 @@ def clusterKmeans(
result.cluster_data = pd.concat(
[result.cluster_data, df_copy["cluster"]], axis=1
)
self.logger.debug(f"Clustered data after KMeans:")
RobynLogger.log_df(self.logger, result.cluster_data)

df = df_copy

self.logger.debug("Calculating cluster means and counts")
Expand All @@ -468,6 +476,8 @@ def clusterKmeans(
cluster_means["n"] = cluster_counts

self.logger.debug(f"Cluster sizes: {dict(cluster_counts)}")
self.logger.debug(f"Cluster means:")
RobynLogger.log_df(self.logger, cluster_means)

# Check for potentially problematic clusters
min_cluster_size = cluster_counts.min()
Expand All @@ -489,47 +499,6 @@ def clusterKmeans(

return result

def _bootstrap_sampling(
self, sample: pd.Series, boot_n: int
) -> Dict[str, List[float]]:
"""Calculate bootstrap confidence interval"""
self.logger.debug(f"Starting bootstrap sampling with n={boot_n}")

if len(sample[~sample.isna()]) > 1:
sample_n = len(sample)
sample_mean = np.mean(sample)

self.logger.debug(f"Performing bootstrap with sample size={sample_n}")
boot_sample = np.random.choice(
sample, size=(boot_n, sample_n), replace=True
)
boot_means = np.mean(boot_sample, axis=1)
se = np.std(boot_means)
me = stats.t.ppf(0.975, sample_n - 1) * se
sample_me = np.sqrt(sample_n) * me
ci = [sample_mean - sample_me, sample_mean + sample_me]

self.logger.debug(
f"Bootstrap results: CI=[{ci[0]:.4f}, {ci[1]:.4f}], SE={se:.4f}"
)
return {
"boot_means": boot_means,
"ci": ci,
"se": [float(se)],
}
else:
self.logger.warning("Insufficient non-NA samples for bootstrap analysis")
ci = (
[np.nan, np.nan]
if sample.isna().all()
else [sample.iloc[0], sample.iloc[0]]
)
return {
"boot_means": sample.tolist(),
"ci": ci,
"se": [0.0],
}

def _select_optimal_clusters(
self,
df: pd.DataFrame,
Expand Down Expand Up @@ -766,14 +735,14 @@ def _select_top_solutions(
df["rank"] = df.groupby("cluster", observed=False)["error_score"].rank(
method="dense"
)

self.logger.info(f"Selected {len(df)} solutions from {initial_solutions} total")
self.logger.debug(f"Final dataset shape: {df.shape}")

return df[
df = df[
["cluster", "rank"]
+ [col for col in df.columns if col not in ["cluster", "rank"]]
]
self.logger.info(f"Selected {len(df)} solutions from {initial_solutions} total")
RobynLogger.log_df(self.logger, df)

return df

def _bootstrap_sampling(
self, sample: pd.Series, boot_n: int, seed: int = 1
Expand Down
10 changes: 10 additions & 0 deletions python/src/robyn/modeling/pareto/data_aggregator.py
Original file line number Diff line number Diff line change
Expand Up @@ -4,6 +4,7 @@
import logging

import pandas as pd
from robyn.common.logger import RobynLogger
from robyn.modeling.entities.modeloutputs import ModelOutputs, Trial


Expand Down Expand Up @@ -73,13 +74,22 @@ def aggregate_model_data(self, calibrated: bool) -> Dict[str, pd.DataFrame]:
result_hyp_param = pd.concat(result_hyp_param_list, ignore_index=True)
x_decomp_agg = pd.concat(x_decomp_agg_list, ignore_index=True)

self.logger.debug("Aggregated result_hyp_param:")
RobynLogger.log_df(self.logger, result_hyp_param)

self.logger.debug("Aggregated x_decomp_agg:")
RobynLogger.log_df(self.logger, x_decomp_agg)

self._check_sol_id(result_hyp_param, x_decomp_agg)

result_calibration = self._process_calibration_data(trials, calibrated)

if not hyper_fixed:
self._add_iterations(result_hyp_param, x_decomp_agg, result_calibration)

self.logger.debug("Aggregated x_decomp_agg:")
RobynLogger.log_df(self.logger, result_calibration)

self._merge_bootstrap_results(x_decomp_agg)

return {
Expand Down
189 changes: 0 additions & 189 deletions python/src/robyn/modeling/pareto/immediate_carryover.py

This file was deleted.

Loading
Loading