Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

fix(ignite): making state saveable, param_groups modifieable #1235

Merged
merged 4 commits into from
Jan 16, 2025
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
16 changes: 12 additions & 4 deletions R/ignite.R
Original file line number Diff line number Diff line change
Expand Up @@ -117,7 +117,8 @@ OptimizerIgnite <- R6::R6Class(
#' The parameter groups of the optimizer.
param_groups = function(rhs) {
if (!missing(rhs)) {
prev_param_groups <- self$state_dict()$param_groups
prev_param_groups <- self$param_groups
all_params = unlist(lapply(prev_param_groups, function(x) x$params))
if (!is.list(rhs) && length(rhs) == length(prev_param_groups)) {
value_error("Parameter groups must be a list of the same length as the number of parameter groups.")
}
Expand All @@ -128,8 +129,16 @@ OptimizerIgnite <- R6::R6Class(
value_error("Parameter groups must have names {paste0(names(prev_param_group), collapse = ', ')} but got {paste0(names(new_param_group), collapse = ', ')}.")
}

if (!identical(prev_param_group$params, new_param_group$params)) {
value_error("Cannot change the indices of the parameter group, use `$add_param_group()` to add a new parameter group.")
param_cmp_value = if (is.integer(new_param_group$params)) {
all_params[new_param_group$params]
} else {
new_param_group$params
}

if (!identical(prev_param_group$params, param_cmp_value)) {
print(prev_param_group$params)
print(new_param_group$params)
value_error("Cannot change the parameter groups, use `$add_param_group()` to add a new parameter group.")
}

private$.set_param_group_options(self$ptr, rhs)
Expand Down Expand Up @@ -367,7 +376,6 @@ is_permutation <- function(vec1, vec2) {
if (length(vec1) != length(vec2)) {
return(FALSE)
}

# Check if sorted elements are the same
identical(sort(vec1), sort(vec2))
}
Expand Down
29 changes: 17 additions & 12 deletions src/lantern/src/Ignite.cpp
Original file line number Diff line number Diff line change
@@ -1,5 +1,6 @@
#include <ostream>
#include <torch/optim/adamw.h>
#include <torch/types.h>
#define LANTERN_BUILD
#include <torch/torch.h>
#include "lantern/lantern.h"
Expand Down Expand Up @@ -113,7 +114,7 @@ void* _ignite_adagrad_get_states(void* optim) {
auto base_state = state_it->second.get();
auto adagrad_state = static_cast<torch::optim::AdagradParamState*>(base_state);
tensors.push_back(adagrad_state->sum().clone());
tensors.push_back(torch::scalar_tensor(adagrad_state->step(), torch::kLong));
tensors.push_back(torch::tensor({adagrad_state->step()}, torch::kLong));
}
}
}
Expand Down Expand Up @@ -201,9 +202,9 @@ void* _ignite_adam_get_states(void* optim) {
if (adam_state->max_exp_avg_sq().defined()) {
tensors.push_back(adam_state->max_exp_avg_sq().clone());
} else {
tensors.push_back(torch::Tensor());
tensors.push_back(torch::empty(0, torch::kFloat32));
}
tensors.push_back(torch::scalar_tensor(adam_state->step(), torch::kLong));
tensors.push_back(torch::tensor({adam_state->step()}, torch::kLong));
}
}
}
Expand All @@ -226,7 +227,7 @@ void _ignite_adam_set_states(void* optim, void* params,void* states_) {
auto* current_state = static_cast<torch::optim::AdamParamState*>(state_it->second.get());
current_state->exp_avg(states[i]);
current_state->exp_avg_sq(states[i + 1]);
if (states[i + 2].defined()) {
if (states[i + 2].numel() != 0) {
current_state->max_exp_avg_sq(states[i + 2]);
}
auto step = states[i + 3];
Expand Down Expand Up @@ -324,9 +325,9 @@ void* _ignite_adamw_get_states(void* optim) {
if (adamw_state->max_exp_avg_sq().defined()) {
tensors.push_back(adamw_state->max_exp_avg_sq().clone());
} else {
tensors.push_back(torch::Tensor());
tensors.push_back(torch::empty(0, torch::kFloat32));
}
tensors.push_back(torch::scalar_tensor(adamw_state->step(), torch::kLong));
tensors.push_back(torch::tensor({adamw_state->step()}, torch::kLong));
}
}
}
Expand Down Expand Up @@ -422,15 +423,15 @@ void* _ignite_rmsprop_get_states(void* optim) {
if (rmsprop_state->grad_avg().defined()) {
tensors.push_back(rmsprop_state->grad_avg().clone());
} else {
tensors.push_back(torch::Tensor());
tensors.push_back(torch::empty(0, torch::kFloat32));
}
tensors.push_back(rmsprop_state->square_avg().clone());
if (rmsprop_state->momentum_buffer().defined()) {
tensors.push_back(rmsprop_state->momentum_buffer().clone());
} else {
tensors.push_back(torch::Tensor());
tensors.push_back(torch::empty(0, torch::kFloat32));
}
tensors.push_back(torch::scalar_tensor(rmsprop_state->step(), torch::kLong));
tensors.push_back(torch::tensor({rmsprop_state->step()}, torch::kLong));
}
}
}
Expand All @@ -451,9 +452,13 @@ void _ignite_rmsprop_set_states(void* optim, void* params, void* states_) {
state_it = opt->state().find(param.unsafeGetTensorImpl());
}
auto* current_state = static_cast<torch::optim::RMSpropParamState*>(state_it->second.get());
current_state->grad_avg(states[i]);
if (states[i].numel() != 0) {
current_state->grad_avg(states[i]);
}
current_state->square_avg(states[i + 1]);
current_state->momentum_buffer(states[i + 2]);
if (states[i + 2].numel() != 0) {
current_state->momentum_buffer(states[i + 2]);
}
auto step = states[i + 3];
current_state->step(step.item<int64_t>());
i += 4;
Expand Down Expand Up @@ -519,7 +524,7 @@ void* _ignite_sgd_get_states(void* optim) {
if (sgd_state->momentum_buffer().defined()) {
tensors.push_back(sgd_state->momentum_buffer().clone());
} else {
tensors.push_back(torch::Tensor());
tensors.push_back(torch::empty(0, torch::kFloat32));
}
}
}
Expand Down
4 changes: 1 addition & 3 deletions tests/testthat/helper-ignite.R
Original file line number Diff line number Diff line change
Expand Up @@ -75,14 +75,12 @@ expect_state_dict_works <- function(optimizer_fn, ...) {
}
replicate(2, s())
if (load) {
o$load_state_dict(o$state_dict())
o$load_state_dict(torch_load(torch_serialize(o$state_dict())))
}
replicate(2, s())
return(n$parameters)
}
torch_manual_seed(123)
w1 <- f(load = TRUE)
torch_manual_seed(123)
w2 <- f(load = FALSE)
expect_equal(w1, w2)
}
Expand Down
72 changes: 67 additions & 5 deletions tests/testthat/test-ignite.R
Original file line number Diff line number Diff line change
Expand Up @@ -30,10 +30,10 @@ test_that("un-optimized parameters and state dict", {
states = sd$state
expect_equal(names(states), "1")
# all parameters are included in the state dict even when they don't have a state.
expect_false(cpp_tensor_is_undefined(states[[1]]$exp_avg))
expect_false(cpp_tensor_is_undefined(states[[1]]$exp_avg_sq))
expect_true(cpp_tensor_is_undefined(states[[1]]$max_exp_avg_sq))
expect_false(cpp_tensor_is_undefined(states[[1]]$step))
expect_false(is.null(states[[1]]$exp_avg))
expect_false(is.null(states[[1]]$exp_avg_sq))
expect_false(is.null(states[[1]]$max_exp_avg_sq))
expect_false(is.null(states[[1]]$step))
opt$load_state_dict(sd)
x1 = unlist(states)
x2 = unlist(opt$state_dict()$state)
Expand All @@ -58,6 +58,12 @@ test_that("adam", {
expect_ignite_can_change_param_groups(optim_ignite_adam)
expect_ignite_can_add_param_group(optim_ignite_adam)
do.call(expect_state_dict_works, c(list(optim_ignite_adam), defaults))
# can save adam even when one of the tensors in the state is undefined in C++
defaults$amsgrad <- FALSE
o <- do.call(make_ignite_adam, defaults)
prev <- o$state_dict()
o$load_state_dict(torch_load(torch_serialize(o$state_dict())))
expect_equal(prev, o$state_dict())
})

test_that("adamw", {
Expand All @@ -73,6 +79,13 @@ test_that("adamw", {
expect_ignite_can_change_param_groups(optim_ignite_adamw)
expect_ignite_can_add_param_group(optim_ignite_adamw)
do.call(expect_state_dict_works, c(list(optim_ignite_adamw), defaults))

# can save adamw even when one of the tensors in the state is undefined in C++
defaults$amsgrad <- FALSE
o <- do.call(make_ignite_adamw, defaults)
prev <- o$state_dict()
o$load_state_dict(torch_load(torch_serialize(o$state_dict())))
expect_equal(prev, o$state_dict())
})

test_that("sgd", {
Expand All @@ -87,6 +100,13 @@ test_that("sgd", {
expect_ignite_can_change_param_groups(optim_ignite_sgd, lr = 0.1)
expect_ignite_can_add_param_group(optim_ignite_sgd)
do.call(expect_state_dict_works, c(list(optim_ignite_sgd), defaults))
o$load_state_dict(torch_load(torch_serialize(o$state_dict())))

# saving of state dict
o <- do.call(make_ignite_sgd, defaults)
prev <- o$state_dict()
o$load_state_dict(torch_load(torch_serialize(o$state_dict())))
expect_equal(prev, o$state_dict())
})

test_that("rmsprop", {
Expand All @@ -102,6 +122,11 @@ test_that("rmsprop", {
expect_ignite_can_change_param_groups(optim_ignite_rmsprop)
expect_ignite_can_add_param_group(optim_ignite_rmsprop)
do.call(expect_state_dict_works, c(list(optim_ignite_rmsprop), defaults))

o <- do.call(make_ignite_rmsprop, defaults)
prev <- o$state_dict()
o$load_state_dict(torch_load(torch_serialize(o$state_dict())))
expect_equal(prev, o$state_dict())
})

test_that("adagrad", {
Expand All @@ -117,6 +142,11 @@ test_that("adagrad", {
expect_ignite_can_change_param_groups(optim_ignite_adagrad)
expect_ignite_can_add_param_group(optim_ignite_adagrad)
do.call(expect_state_dict_works, c(list(optim_ignite_adagrad), defaults))

o <- do.call(make_ignite_adagrad, defaults)
prev <- o$state_dict()
o$load_state_dict(torch_load(torch_serialize(o$state_dict())))
expect_equal(prev, o$state_dict())
})

test_that("base class: can initialize optimizer with different options per param group", {
Expand Down Expand Up @@ -160,6 +190,17 @@ test_that("base class: params must have length > 1", {
expect_error(optim_ignite_adamw(list()), "must have length")
})

test_that("base class: can change values of param_groups", {
o = optim_ignite_adamw(list(torch_tensor(1, requires_grad = TRUE)), lr = 0.1)
o$param_groups[[1]]$lr = 1
expect_equal(o$param_groups[[1]]$lr, 1)
o$param_groups[[1]]$amsgrad = FALSE
expect_true(!o$param_groups[[1]]$amsgrad)
o$param_groups[[1]]$amsgrad = TRUE
expect_false(!o$param_groups[[1]]$amsgrad)
})


test_that("base class: error handling when loading state dict", {
o = make_ignite_adamw()
expect_error(o$load_state_dict(list()), "must be a list with elements")
Expand All @@ -174,7 +215,28 @@ test_that("base class: error handling when loading state dict", {
expect_error(o$load_state_dict(sd3), "but got params, weight_decay")
})

test_that("deep cloning not possible", {
test_that("base class: deep cloning not possible", {
o = make_ignite_adamw(steps = 0)
expect_error(o$clone(deep = TRUE), "OptimizerIgnite cannot be deep cloned")
})

test_that("base class: changing the learning rate has an effect", {
n1 = nn_linear(1, 1)
n2 = n1$clone(deep = TRUE)
o1 = optim_sgd(n1$parameters, lr = 0.1)
o2 = optim_sgd(n2$parameters, lr = 0.1)

s = function(n, o) {
o$zero_grad()
((n(torch_tensor(1)) - torch_tensor(1))^2)$backward()
o$step()
}

s(n1, o1)
s(n2, o2)
expect_true(torch_equal(n1$parameters[[1]], n2$parameters[[1]]) && torch_equal(n1$parameters[[2]], n2$parameters[[2]]))
o1$param_groups[[1]]$lr = 0.2
s(n1, o1)
s(n2, o2)
expect_false(torch_equal(n1$parameters[[1]], n2$parameters[[1]]) && torch_equal(n1$parameters[[2]], n2$parameters[[2]]))
})
Loading