Skip to content

Commit

Permalink
bump
Browse files Browse the repository at this point in the history
  • Loading branch information
rwst committed Jun 6, 2024
1 parent 440a1cb commit afb10ee
Showing 1 changed file with 4 additions and 6 deletions.
10 changes: 4 additions & 6 deletions InfinitePrimesViaLog/Basic.lean
Original file line number Diff line number Diff line change
Expand Up @@ -22,14 +22,11 @@ theorem mul_mem_smoothNumbers' {m₁ m₂ n : ℕ}
theorem Fin.prod_univ_get' (α β : Type) [CommMonoid β] (l : List α) (f : α → β) : ∏ i, f (l.get i) = (l.map f).prod := by sorry

lemma primeCountingReal_pos (hxg3 : 3 ≤ x) : primeCountingReal x > 0 := by
have count_primes_upto_four : 0 < count Nat.Prime (3⌋₊ + 1) := by rw [floor_nat]; norm_num; decide
have count_primes_upto_three : 0 < count Nat.Prime ⌊3⌋₊ := by rw [floor_nat]; norm_num; decide
unfold primeCountingReal
apply ite_pos Nat.one_pos
unfold primeCounting'
sorry
-- exact gt_of_ge_of_gt
-- (count_monotone Nat.Prime (Nat.add_le_add_right (le_floor hxg3) 1))
-- count_primes_upto_four
exact gt_of_ge_of_gt (count_monotone Nat.Prime (le_floor hxg3)) count_primes_upto_three

lemma range_eq_Icc_zero_sub_one (n : ℕ) (hn : n ≠ 0): range n = Icc 0 (n - 1) := by
ext b
Expand Down Expand Up @@ -217,7 +214,8 @@ theorem log_le_primeCountingReal_add_one (n : ℕ)
_ ≤ (∑' m : (S₁ x), (m : ℝ)⁻¹) := H_P4_1 x n hn hnx
_ = (∏ p ∈ primesBelow ⌊x⌋₊, (∑' k : ℕ, (p ^ k : ℝ)⁻¹)) := H_P4_2 x
_ = (∏ p ∈ primesBelow ⌊x⌋₊, ((p : ℝ) / (p - 1))) := H_P4_3 x
_ = (∏ k ∈ Icc 0 ((primeCountingReal x) - 1), (nth (PrimeBelow ⌊x⌋₊) k : ℝ) / (nth (PrimeBelow ⌊x⌋₊) k - 1)) := H_P4_3a x hxg3
_ = (∏ k ∈ Icc 0 ((primeCountingReal x) - 1),
(nth (PrimeBelow ⌊x⌋₊) k : ℝ) / (nth (PrimeBelow ⌊x⌋₊) k - 1)) := H_P4_3a x hxg3
_ ≤ (∏ k ∈ Icc 1 (primeCountingReal x), (k + 1 : ℝ) / k) := H_P4_4 x
_ = primeCountingReal x + 1 := H_P4_5 x hxg3

Expand Down

0 comments on commit afb10ee

Please sign in to comment.