Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Aachen Turbine Tutorial #56

Open
wants to merge 3 commits into
base: develop
Choose a base branch
from
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
365 changes: 365 additions & 0 deletions compressible_flow/Aachen_Turbine/Aachen_Turbine.cfg
Original file line number Diff line number Diff line change
@@ -0,0 +1,365 @@
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %
% SU2 configuration file %
% Case description: AACHEN turbine 3D %
% Author: S. Vitale, A. Cappiello %
% Institution: Delft University of Technology %
% Date: Oct 20th, 2023 %
% %

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Can you add the version this works for?

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
%
% ------------- DIRECT, ADJOINT, AND LINEARIZED PROBLEM DEFINITION ------------%
%
% Physical governing equations
SOLVER= RANS
%
% Specify turbulent model (NONE, SA, SST)
KIND_TURB_MODEL= SA
%
% Mathematical problem (DIRECT, ADJOINT, LINEARIZED)
MATH_PROBLEM= DIRECT
%
% Restart solution (NO, YES)
RESTART_SOL= NO
%
MULTIZONE= YES
%
% List of config files for zone-specific options
CONFIG_LIST=(stator1.cfg, rotor.cfg, stator2.cfg)
%
% -------------------- COMPRESSIBLE FREE-STREAM DEFINITION --------------------%
%
% Mach number (non-dimensional, based on the free-stream values)
MACH_NUMBER= 0.05
%
% Angle of attack (degrees, only for compressible flows)
AOA= 0.0
%
% Free-stream pressure (101325.0 N/m^2 by default, only Euler flows)
FREESTREAM_PRESSURE= 140000.0
%
% Free-stream temperature (273.15 K by default)
FREESTREAM_TEMPERATURE= 300.0
%
% Free-stream temperature (1.2886 Kg/m3 by default)
FREESTREAM_DENSITY= 1.7418
%
% Free-stream option to choose if you want to use Density (DENSITY_FS) or Temperature TEMPERATURE_FS) to initialize the solution
FREESTREAM_OPTION= TEMPERATURE_FS
%
% Free-stream Turbulence Intensity
FREESTREAM_TURBULENCEINTENSITY = 0.025
%
% Free-stream Turbulent to Laminar viscosity ratio
FREESTREAM_TURB2LAMVISCRATIO = 100.0
%
%
%Init option to choose between Reynolds (default) or thermodynamics quantities for initializing the solution (REYNOLDS, TD_CONDITIONS)
INIT_OPTION= TD_CONDITIONS
%
% ---------------------- REFERENCE VALUE DEFINITION ---------------------------%
%
% Reference origin for moment computation
REF_ORIGIN_MOMENT_X = 0.00
REF_ORIGIN_MOMENT_Y = 0.00
REF_ORIGIN_MOMENT_Z = 0.00
%
% Reference area for force coefficients (0 implies automatic calculation)
REF_AREA= 1.0
%
% Flow non-dimensionalization
REF_DIMENSIONALIZATION= DIMENSIONAL
%
%
% ------------------------------ EQUATION OF STATE ----------------------------%
%
% Different gas model (STANDARD_AIR, IDEAL_GAS, VW_GAS, PR_GAS)
FLUID_MODEL= IDEAL_GAS
%
% Ratio of specific heats (1.4 default and the value is hardcoded for the model STANDARD_AIR)
GAMMA_VALUE= 1.4
%
% Specific gas constant (287.058 J/kg*K default and this value is hardcoded for the model STANDARD_AIR)
GAS_CONSTANT= 287.058
%
% Critical Temperature (273.15 K by default)
CRITICAL_TEMPERATURE= 273.15
%
% Critical Pressure (101325.0 N/m^2 by default)
CRITICAL_PRESSURE= 101325.0
%
% Acentri factor (0.035 (air))
ACENTRIC_FACTOR= 0.035
%
% --------------------------- VISCOSITY MODEL ---------------------------------%
%
% Viscosity model (SUTHERLAND, CONSTANT_VISCOSITY).
VISCOSITY_MODEL= SUTHERLAND
%
% Molecular Viscosity that would be constant (1.716E-5 by default)
MU_CONSTANT= 1.716E-5

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

I don't think this does anything so maybe best to remove it to avoid confusing between this and MU_REF

%
% Sutherland Viscosity Ref (1.716E-5 default value for AIR SI)
MU_REF= 1.716E-5
%
% Sutherland Temperature Ref (273.15 K default value for AIR SI)
MU_T_REF= 273.15
%
% Sutherland constant (110.4 default value for AIR SI)
SUTHERLAND_CONSTANT= 110.4
%
% --------------------------- THERMAL CONDUCTIVITY MODEL ----------------------%
%
% Conductivity model (CONSTANT_CONDUCTIVITY, CONSTANT_PRANDTL).
CONDUCTIVITY_MODEL= CONSTANT_PRANDTL
%
% -------------------- BOUNDARY CONDITION DEFINITION --------------------------%
%
%Navier-Stokes wall boundary marker(s) (NONE = no marker)
MARKER_HEATFLUX= (BLADE1, 0.0, BLADE2, 0.0, BLADE3, 0.0, HUB1, 0.0, SHROUD1, 0.0, HUB2, 0.0, SHROUD2, 0.0, HUB3, 0.0, SHROUD3, 0.0)
%
% ------------------------ WALL FUNCTION DEFINITION --------------------------%
%
MARKER_WALL_FUNCTIONS= ( BLADE1, STANDARD_WALL_FUNCTION , BLADE2, STANDARD_WALL_FUNCTION , BLADE3, STANDARD_WALL_FUNCTION , HUB1, STANDARD_WALL_FUNCTION , SHROUD1, STANDARD_WALL_FUNCTION , HUB2, STANDARD_WALL_FUNCTION , SHROUD2, STANDARD_WALL_FUNCTION , HUB3, STANDARD_WALL_FUNCTION , SHROUD3, STANDARD_WALL_FUNCTION )
WALLMODEL_KAPPA= 0.41
WALLMODEL_B= 5.5
WALLMODEL_MINYPLUS= 5.0
WALLMODEL_MAXITER= 200
WALLMODEL_RELFAC= 0.5

% Periodic boundary marker(s) (NONE = no marker)
% Format: ( periodic marker, donor marker, rot_cen_x, rot_cen_y, rot_cen_z, rot_angle_x-axis, rot_angle_y-axis, rot_angle_z-axis, translation_x, translation_y, translation_z)
MARKER_PERIODIC= (PER1_STATOR1, PER2_STATOR1, 0.0, 0.0, 0.0, 0.0, 0.0, 8.7804878, 0.0, 0.0, 0.0, PER1_ROTOR, PER2_ROTOR, 0.0, 0.0, 0.0, 0.0, 0.0, 8.7804878, 0.0, 0.0, 0.0, PER1_STATOR2, PER2_STATOR2, 0.0, 0.0, 0.0, 0.0, 0.0, 8.7804878, 0.0, 0.0, 0.0)
%
%
%-------- INFLOW/OUTFLOW BOUNDARY CONDITION SPECIFIC FOR TURBOMACHINERY --------%
%
% Inflow and Outflow markers must be specified, for each blade (zone), following the natural groth of the machine (i.e, from the first blade to the last)
MARKER_TURBOMACHINERY= (INFLOW_STATOR1, OUTFLOW_STATOR1, INFLOW_ROTOR, OUTFLOW_ROTOR, INFLOW_STATOR2, OUTFLOW_STATOR2)
MARKER_ANALYZE = (INFLOW_STATOR1, OUTFLOW_STATOR2)

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Move to surface identification section for consistency with config_template

% Mixing-plane interface markers must be specified to activate the transfer of information between zones
MARKER_MIXINGPLANE_INTERFACE= (OUTFLOW_STATOR1, INFLOW_ROTOR, OUTFLOW_ROTOR, INFLOW_STATOR2)
% Mixing-plane interface markers must be specified to activate the transfer of information between zones
MARKER_ZONE_INTERFACE= (OUTFLOW_STATOR1, INFLOW_ROTOR, OUTFLOW_ROTOR, INFLOW_STATOR2)
%
% Non reflecting boundary condition for inflow, outfolw and mixing-plane
% Format inlet: ( marker, TOTAL_CONDITIONS_PT, Total Pressure , Total Temperature, Flow dir-norm, Flow dir-tang, Flow dir-span, under-relax-avg, under-relax-fourier)
% Format outlet: ( marker, STATIC_PRESSURE, Static Pressure value, -, -, -, -, under-relax-avg, under-relax-fourier)
% Format mixing-plane in and out: ( marker, MIXING_IN or MIXING_OUT, -, -, -, -, -, -, under-relax-avg, under-relax-fourier)
MARKER_GILES= (INFLOW_STATOR1, TOTAL_CONDITIONS_PT, 158245.38, 308.26, 1.0, 0.0, 0.0, 0.3, 0.0, OUTFLOW_STATOR1, MIXING_OUT, 0.0, 0.0, 0.0, 0.0, 0.0, 0.3, 0.0, INFLOW_ROTOR, MIXING_IN, 0.0, 0.0, 0.0, 0.0, 0.0, 0.3, 0.0, OUTFLOW_ROTOR, MIXING_OUT, 0.0, 0.0, 0.0, 0.0, 0.0, 0.3, 0.0, INFLOW_STATOR2, MIXING_IN, 0.0, 0.0, 0.0, 0.0, 0.0, 0.3, 0.0, OUTFLOW_STATOR2, STATIC_PRESSURE_1D, 110050.96, 0.0, 0.0, 0.0, 0.0 , 1.0, 0.0)
SPATIAL_FOURIER= NO
%
% This option insert an extra under relaxation factor for the Giles BC at the hub and shroud levels
GILES_EXTRA_RELAXFACTOR= (0.05, 0.05)
%
%---------------------------- TURBOMACHINERY SIMULATION -----------------------------%
%
% Format: (marker)
% If the ROTATING_FRAME option is activated, this option force
% the velocity on the boundaries specified to 0.0
MARKER_SHROUD= (SHROUD1, SHROUD2, SHROUD3)
%
% Specify kind of architecture (AXIAL, CENTRIPETAL, CENTRIFUGAL, CENTRIPETAL_AXIAL)
TURBOMACHINERY_KIND= AXIAL AXIAL AXIAL
%
% Uncomment to work with new_turbo_outputs
TURBO_PERF_KIND= (TURBINE, TURBINE, TURBINE)
%
% Specify kind of interpolation for the mixing-plane (LINEAR_INTERPOLATION, NEAREST_SPAN, MATCHING)
MIXINGPLANE_INTERFACE_KIND= LINEAR_INTERPOLATION
%
% Specify option for turbulent mixing-plane (YES, NO) default NO
TURBULENT_MIXINGPLANE= YES
%
% Specify ramp option for Outlet pressure (YES, NO) default NO
RAMP_OUTLET_PRESSURE= YES
%
% Parameters of the outlet pressure ramp (starting outlet pressure, updating-iteration-frequency, total number of iteration for the ramp)
RAMP_OUTLET_PRESSURE_COEFF= (140000.0, 150.0, 2000)
%
% Specify Kind of average process for linearizing the Navier-Stokes equation at inflow and outflow BC included mixing-plane
% (ALGEBRAIC, AREA, MASSSFLUX, MIXEDOUT) default AREA
AVERAGE_PROCESS_KIND= MIXEDOUT
%
% Specify Kind of average process for computing turbomachienry performance parameters
% (ALGEBRAIC, AREA, MASSSFLUX, MIXEDOUT) default AREA
PERFORMANCE_AVERAGE_PROCESS_KIND= MIXEDOUT
%
%Parameters of the Newton method for the MIXEDOUT average algorithm (under relaxation factor, tollerance, max number of iterations)
MIXEDOUT_COEFF= (1.0, 1.0E-05, 15)
%
% Limit of Mach number below which the mixedout algorithm is substituted with a AREA average algorithm
AVERAGE_MACH_LIMIT= 0.03
%
%
% ------------------------ SURFACES IDENTIFICATION ----------------------------%
%
% Marker(s) of the surface in the surface flow solution file
MARKER_PLOTTING= (BLADE1, BLADE2, BLADE3)
MARKER_MONITORING= (BLADE1, BLADE2, BLADE3)
%
% ------------- COMMON PARAMETERS DEFINING THE NUMERICAL METHOD ---------------%
%
% Numerical method for spatial gradients (GREEN_GAUSS, WEIGHTED_LEAST_SQUARES)
NUM_METHOD_GRAD= WEIGHTED_LEAST_SQUARES
%
% Courant-Friedrichs-Lewy condition of the finest grid
CFL_NUMBER= 2
%
% Adaptive CFL number (NO, YES)
CFL_ADAPT= NO
%
% Parameters of the adaptive CFL number (factor down, factor up, CFL min value, CFL max value )
CFL_ADAPT_PARAM= ( 1.3, 1.2, 1.0, 10.0)
%
%
% ------------------------ LINEAR SOLVER DEFINITION ---------------------------%
%
% Linear solver or smoother for implicit formulations
LINEAR_SOLVER= FGMRES
%
% Preconditioner of the Krylov linear solver (ILU, LU_SGS, LINELET, JACOBI)
LINEAR_SOLVER_PREC= LU_SGS
%
% Min error of the linear solver for the implicit formulation
LINEAR_SOLVER_ERROR= 1E-4
%
% Max number of iterations of the linear solver for the implicit formulation
LINEAR_SOLVER_ITER= 15
%
% ----------------------- SLOPE LIMITER DEFINITION ----------------------------%
%
% Coefficient for the limiter
VENKAT_LIMITER_COEFF= 0.01
%
% Freeze the value of the limiter after a number of iterations
LIMITER_ITER= 999999
%
% -------------------- FLOW NUMERICAL METHOD DEFINITION -----------------------%
%
% Convective numerical method
CONV_NUM_METHOD_FLOW= JST
ENTROPY_FIX_COEFF= 0.3
%
JST_SENSOR_COEFF= ( 0.5, 0.25 )
% Spatial numerical order integration
MUSCL_FLOW= NO

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

I would remove this option too

%
% Slope limiter (VENKATAKRISHNAN, VAN_ALBADA)
SLOPE_LIMITER_FLOW= VENKATAKRISHNAN
%
%
% Time discretization (RUNGE-KUTTA_EXPLICIT, EULER_IMPLICIT, EULER_EXPLICIT)
TIME_DISCRE_FLOW= EULER_IMPLICIT
%
% -------------------- TURBULENT NUMERICAL METHOD DEFINITION ------------------%
%
% Convective numerical method (SCALAR_UPWIND)
CONV_NUM_METHOD_TURB= SCALAR_UPWIND
%
% Spatial numerical order integration
MUSCL_TURB= NO
%
% Slope limiter (VENKATAKRISHNAN, MINMOD)
SLOPE_LIMITER_TURB= VENKATAKRISHNAN
%
% Time discretization (EULER_IMPLICIT)
TIME_DISCRE_TURB= EULER_IMPLICIT
%
% Reduction factor of the CFL coefficient in the turbulence problem
CFL_REDUCTION_TURB= 0.1
%
% ----------------------- DESIGN VARIABLE PARAMETERS --------------------------%

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Don't think this whole section is necessary, let's save it for the turbo adjoint tutorial

%
% Kind of deformation (NO_DEFORMATION, TRANSLATION, ROTATION, SCALE,
% FFD_SETTING, FFD_NACELLE
% FFD_CONTROL_POINT, FFD_CAMBER, FFD_THICKNESS, FFD_TWIST
% FFD_CONTROL_POINT_2D, FFD_CAMBER_2D, FFD_THICKNESS_2D, FFD_TWIST_2D,
% HICKS_HENNE, SURFACE_BUMP)
DV_KIND= NO_DEFORMATION
%
% Marker of the surface in which we are going apply the shape deformation
DV_MARKER= (BLADE1, BLADE2, BLADE3)
%
% Parameters of the shape deformation
DV_PARAM= ( 1, 0.5)
%
% Value of the shape deformation
DV_VALUE= 0.01
%
% --------------------------- CONVERGENCE PARAMETERS --------------------------%
%
% Number of total iterations
OUTER_ITER=20000
%
% Convergence criteria (CAUCHY, RESIDUAL)
CONV_FIELD=RMS_ENERGY[0]
%
% Min value of the residual (log10 of the residual)
CONV_RESIDUAL_MINVAL= -12
%
% Start convergence criteria at iteration number
CONV_STARTITER= 10
%
% Screen output fields (use 'SU2_CFD -d <config_file>' to view list of available fields)
SCREEN_OUTPUT= (OUTER_ITER, RMS_DENSITY[0], RMS_DENSITY[1], RMS_DENSITY[2], RMS_MOMENTUM-X[0], RMS_MOMENTUM-X[1], RMS_MOMENTUM-X[2], RMS_MOMENTUM-Y[0], RMS_MOMENTUM-Y[1], RMS_MOMENTUM-Y[2], RMS_MOMENTUM-Z[0], RMS_MOMENTUM-Z[1], RMS_MOMENTUM-Z[2], RMS_ENERGY[0], RMS_ENERGY[1], RMS_ENERGY[2])
%
% History output groups (use 'SU2_CFD -d <config_file>' to view list of available fields)
HISTORY_OUTPUT= (ITER, RMS_RES, TURBO_PERF)
%
% Volume output fields/groups (use 'SU2_CFD -d <config_file>' to view list of available fields)
VOLUME_OUTPUT= (COORDINATES, SOLUTION, PRIMITIVE, TURBOMACHINERY, RESIDUAL, LIMITER, VORTEX_IDENTIFICATION)
%
OUTPUT_FILES= (TECPLOT_ASCII, SURFACE_TECPLOT_ASCII, RESTART)
%
% ------------------------- INPUT/OUTPUT INFORMATION --------------------------%
%
% Mesh input file
MESH_FILENAME= Aachen_Turbine.su2
%
% Mesh input file format
MESH_FORMAT= SU2
%
% Mesh output file
MESH_OUT_FILENAME= Aachen_Turbine.su2
%
% Restart flow input file
SOLUTION_FILENAME= solution_flow.dat
%
% Restart adjoint input file
SOLUTION_ADJ_FILENAME= solution_adj.dat
%
% Output file format
TABULAR_FORMAT= TECPLOT
%
% Output file convergence history (w/o extension)
CONV_FILENAME= history
%
% Output file restart flow
RESTART_FILENAME= restart_flow.dat
%
% Output file restart adjoint
RESTART_ADJ_FILENAME= restart_adj.dat
%
% Output file flow (w/o extension) variables
VOLUME_FILENAME= flow
%
% Output file adjoint (w/o extension) variables
VOLUME_ADJ_FILENAME= adjoint
%
% Output objective function gradient (using continuous adjoint)
GRAD_OBJFUNC_FILENAME= of_grad.dat
%
% Output file surface flow coefficient (w/o extension)
SURFACE_FILENAME= surface_flow
%
% Output file surface adjoint coefficient (w/o extension)
SURFACE_ADJ_FILENAME= surface_adjoint
%
% Writing solution file frequency
OUTPUT_WRT_FREQ= 1000
%
% Writing convergence history frequency
HISTORY_WRT_FREQ_OUTER= 1
WRT_ZONE_HIST = YES
Loading