-
Notifications
You must be signed in to change notification settings - Fork 2
Benchmark Mohr Coulomb (MC) viscosplastic material is sheared by a constant velocity
In this benchmark, a square block (1 m x 1 m) of Mohr-Coulomb (MC) visocoplastic material is simply sheared with a constant velocity.
-
$v_{x}(y) = v_{x}y$ in${(x,y)| (x,y) \in [0,1] \times [0,1]}.$ -
$v_{y} = 0$ and$0 \le y \le 1$ -
$u(y,t) = (v_{x}yt, 0)$ $$\varepsilon_{xy} = \frac{1}{2}\frac{\partial (v_{x}yt)}{\partial y} = \frac{1}{2} v_{x} t.$$
Here
The principal directions are the columns of the following matrix:
From
When
Summarized below is the algorithm for the analytic solution for the simple shear case:
-
$\sigma_{xy}^{n+1,el} = \sigma_{xy}^{n,el} + \mu v_{x} \Delta t$ . -
$S_{1}^{n+1,el} = -\sigma_{xy}^{n+1,el}$ and$S_{2}^{n+1,el} = \sigma_{xy}^{n+1,el}$ . - If
$f_{s}(\mathbf{S}^{n+1,el}) > 0$ ,$\sigma_{xy}^{n+1} = \sigma_{xy}^{n+1,el}$ ; continue - If
$f_{s}(\mathbf{S}^{n+1,el}) <= 0$ ,-
$\Delta\beta = \frac{f_{s}(S_{1}^{n+1,el},S_{2}^{n+1,el})}{2\mu(1+N_{\phi}N_{\psi})}$ . -
$\bar{S}_{1}^{n+1} = S_1^{n+1,el} - 2\mu \Delta\beta$ . -
$\bar{S}_{2}^{n+1} = S_2^{n+1,el} + 2\mu \Delta\beta$ . -
$\bar{\sigma}_{xy}^{n+1} = \bar{S}_2^{n+1}$ . -
$\sigma_{xy}^{n+1} = (\sigma_{xy}^{n+1,el} + \frac{\Delta t}{\eta} \bar{\sigma}_{xy}^{n+1}) / (1 + \frac{\Delta t}{\eta})$ .
-