Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Harmonize PSO and NM optimizers #115

Merged
merged 15 commits into from
Dec 19, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
2 changes: 2 additions & 0 deletions README.md
Original file line number Diff line number Diff line change
Expand Up @@ -64,6 +64,8 @@ Does other simulation software exist in Python? Sure, but most of them hold your
> Validated the use of Python 3.11. Efficiency gains in simulation of jump processes. Ommitted dependency on Numba. All changes related to publishing our software manuscript in Journal of Computational Science. Improved nomenclature in model defenition.
- Version 0.2.5 (2024-10-08, PR #106)
> Validated the use of Python 3.12. Validated pySODM on macOS Sonoma 14.5. 'draw functions' only have 'parameters' as mandatory input, followed by an arbitrary number of additional parameters (PR #75). Tutorial environment can now be found in `tutorial_env.yml` and was renamed `PYSODM-TUTORIALS` (PR #76). Users can choose when the simulation starts when calibrating a model (PR #92). Initial model states can now be a function returning a dictionary of states. This initial condition function can have arguments, which become part of the model's parameters, and can therefore be optimised (PR #99). Deprecation of legacy 'warmup' parameter (PR #100). Change 'states' --> 'initial_states' as input needed to initialize a model (PR #102).
- Version 0.2.6 (in preparation)
> Harmonize NM and PSO optimizer output (PR #115).
- Version 0.1 (2022-12-23, PR #14)
> Application pySODM to three use cases. Documentation website. Unit tests for ODE, JumpProcess and calibration.
- Version 0.1.1 (2023-01-09, PR #20)
Expand Down
4 changes: 2 additions & 2 deletions docs/enzyme_kinetics.md
Original file line number Diff line number Diff line change
Expand Up @@ -176,11 +176,11 @@ from pySODM.optimization import pso, nelder_mead
if __name__ == '__main__':

# PSO
theta = pso.optimize(objective_function, swarmsize=50, max_iter=30, processes=2)[0]
theta, _ = pso.optimize(objective_function, swarmsize=50, max_iter=30, processes=2)

# Nelder-mead
step = len(theta)*[0.05,]
theta = nelder_mead.optimize(objective_function, theta, step, processes=2, max_iter=30)[0]
theta, _ = nelder_mead.optimize(objective_function, theta, step, processes=2, max_iter=30)
```

We find the following estimates for our parameters,
Expand Down
15 changes: 8 additions & 7 deletions docs/optimization.md
Original file line number Diff line number Diff line change
Expand Up @@ -163,7 +163,7 @@
> Perform a [Nelder-Mead minimization](https://en.wikipedia.org/wiki/Nelder%E2%80%93Mead_method).

> **Parameters:**
> * **func** (function) - Callable function or class representing the objective function to be minimized. Recommended `pySODM.optimization.log_posterior_probability`.
> * **func** (function) - Callable function or class representing the objective function to be minimized. Recommended using `pySODM.optimization.log_posterior_probability`.
> * **x_start** (list or 1D np.ndarray) - Starting estimate for the search algorithm. Length must equal the number of provided bounds.
> * **step** (list or 1D np.ndarray) - (Relative) size of the initial search simplex.
> * **bounds** (list) - optional - The bounds of the design variable(s). In form `[(lb_1, ub_1), ..., (lb_n, ub_n)]`. If class `log_posterior_probability` is used as `func`, it already contains bounds. If bounds are provided these will overwrite the bounds available in the 'log_posterior_probability' object.
Expand All @@ -181,7 +181,8 @@
> * **sigma** (float) - optional - Shrink coefficient

> **Returns:**
> * **theta** (list) - Position 0: Estimated parameters. Position 1: corresponding score of `func`.
> * **theta** (list) - Optimised parameter values.
> * **score** (float) - Corresponding corresponding objective function value.

## pso.py

Expand All @@ -190,12 +191,12 @@
> Perform a [Particle Swarm Optimization](https://en.wikipedia.org/wiki/Particle_swarm_optimization).

> **Parameters:**
> * **func** (function) - Callable function or class representing the objective function to be minimized. Recommended `log_posterior_probability`.
> * **func** (function) - Callable function or class representing the objective function to be minimized. Recommended using `log_posterior_probability`.
> * **bounds** (list) - optional - The bounds of the design variable(s). In form `[(lb_1, ub_1), ..., (lb_n, ub_n)]`. If class `log_posterior_probability` is used as `func`, it already contains bounds. If bounds are provided these will overwrite the bounds available in the 'log_posterior_probability' object.
> * **ieqcons** (list) - A list of functions of length n such that ```ieqcons[j](x,*args) >= 0.0``` in a successfully optimized problem
> * **f_ieqcons** (function) - Returns a 1-D array in which each element must be greater or equal to 0.0 in a successfully optimized problem. If f_ieqcons is specified, ieqcons is ignored
> * **args** (tuple) - optional - Additional arguments passed to objective function.
> * **kwargs** (dict) - optional - Additional keyworded arguments passed to objective function. Example use: To compute our log posterior probability (class `log_posterior_probability`) with the 'RK45' method, we must change the `method` argument of the `sim` function, which is called in `log_posterior_probability`. To achieve this, we can supply the keyworded argument `simulation_kwargs` of `log_posterior_probability`, which passes its arguments on to the `sim` function. To this end, use `kwargs={'simulation_kwargs':{'method': 'RK45'}}`.
> * **ieqcons** (list) - A list of functions of length n such that ```ieqcons[j](x,*args) >= 0.0``` in a successfully optimized problem
> * **f_ieqcons** (function) - Returns a 1-D array in which each element must be greater or equal to 0.0 in a successfully optimized problem. If f_ieqcons is specified, ieqcons is ignored
> * **processes** (int) - optional - Number of cores to use.

> **Hyperparameters:**
Expand All @@ -207,11 +208,11 @@
> * **phip** (float) - optional - Tendency to search away from the particles best known position. A higher value means each particle has less confidence in it's own best value.
> * **phig** (float) - optional - Tendency to search away from the swarm's best known position. A higher value means each particle has less confidence in the swarm's best value.
> * **debug** (bool) - optional - If True, progress statements will be displayed every iteration
> * **particle_output** (bool) - optional - If True, function additionally returns the best particles position and objective function score
> * **transform_pars** (func) - optional - Transform the parameter values. E.g. to integer values or to map to a list of possibilities

> **Returns:**
> * **theta** (list) - Position 0: Estimated parameters. Position 1: Corresponding score of `func`. If `particle_output==True` then: Position 3: The best known position per particle. Position 4: Vorresponding score of `func`.
> * **theta** (list) - Optimised parameter values.
> * **score** (float) - Corresponding corresponding objective function value.

## mcmc.py

Expand Down
2 changes: 1 addition & 1 deletion docs/workflow.md
Original file line number Diff line number Diff line change
Expand Up @@ -246,7 +246,7 @@ if __name__ == '__main__':
# Initial guess
theta = [0.35,]
# Run Nelder-Mead optimisation
theta = nelder_mead.optimize(objective_function, theta, step=[0.10,], processes=1, max_iter=10)[0]
theta, _ = nelder_mead.optimize(objective_function, theta, step=[0.10,], processes=1, max_iter=10)
```
We find an optimal value of {math}`\beta \pm 0.27`. We can then asses the goodness-of-fit by updating the dictionary of model parameters with the newly found value for `beta`, simulating the model and visualizing the model prediction and dataset.

Expand Down
55 changes: 33 additions & 22 deletions src/pySODM/optimization/nelder_mead.py
Original file line number Diff line number Diff line change
Expand Up @@ -3,44 +3,55 @@
import multiprocessing as mp
from functools import partial

'''
Pure Python/Numpy implementation of the Nelder-Mead algorithm with multiprocessing support.
"""
A pure Python/Numpy implementation of the Nelder-Mead simplex algorithm with multiprocessing support.
Reference: https://en.wikipedia.org/wiki/Nelder%E2%80%93Mead_method
'''
"""

def _obj_wrapper(func, args, kwargs, x):
"""
A posterior probability must be maximised; so we switch signs
"""
return -func(x, *args, **kwargs)

def optimize(func, x_start, step,
bounds=None, args=(), kwargs={}, processes=1, no_improve_thr=1e-6,
bounds=None, args=(), kwargs={},
processes=1, no_improve_thr=1e-6,
no_improv_break=100, max_iter=1000,
alpha=1., gamma=2., rho=-0.5, sigma=0.5):
"""
Perform a Nelder-Mead minimization
Perform a Nelder-Mead simplex optimization -- minimization of an objective function

Parameters
==========

func : callable function or class 'log_posterior_probability' (~/src/optimization/objective_functions.py)
The objective function to be minimized
x_start: list or 1D np.ndarray
Starting estimate for the search algorithm. Length must equal the number of provided bounds.
step: list or 1D np.ndarray
Size of the initial search simplex
bounds: tuple array
The bounds of the design variable(s). In form [(lower, upper), ..., (lower, upper)]
Class 'log_posterior_probability' automatically contains bounds. If bounds are provided these overwrite the bounds available in the 'log_posterior_probability' object.
step: list or 1D np.ndarray
Size of the initial search simplex

Optional
========

bounds: list containing tuples
The bounds of the parameter(s). In the form: [(lower, upper), ..., (lower, upper)].
If `func` is pySODM class 'log_posterior_probability', bounds are automatically inferred.
If bounds are provided anyway these overwrite the bounds available in the 'log_posterior_probability' object.
args : tuple
Additional arguments passed to objective function
(Default: empty tuple)
kwargs : dict
Additional keyword arguments passed to objective function

Returns
=======
theta: list
Position 0: estimated parameters
Position 1: corresponding score

theta: list
optimised parameter values

score: float
corresponding objective function value
"""

##################
Expand All @@ -52,7 +63,7 @@ def optimize(func, x_start, step,
bounds = func.expanded_bounds
except:
raise Exception(
"'func' does not appear to be a pySODM model: 'expanded_bounds' not found. Provide bounds directly to `nelder_mead.optimize()`"
"please provide 'bounds'."
)

# Input check bounds
Expand Down Expand Up @@ -112,7 +123,7 @@ def optimize(func, x_start, step,
score.append(obj(x))
# Check bounds
for i,x in enumerate(mp_args):
for j, x_j in enumerate(x):
for j, _ in enumerate(x):
if ((x[j] < lb[j]) | (x[j] > ub[j])):
score[i] = np.inf
# Construct vector of inputs and scores
Expand All @@ -139,7 +150,7 @@ def optimize(func, x_start, step,
# Break after max_iter
if max_iter and iters >= max_iter:
print('Maximum number of iteration reached. Quitting.\n')
return res[0]
return res[0][0], res[0][1]
iters += 1
# Break if no improvements for too long
if best < prev_best - no_improve_thr:
Expand All @@ -149,7 +160,7 @@ def optimize(func, x_start, step,
no_improv += 1
if no_improv >= no_improv_break:
print('Maximum number of iterations without improvement reached. Quitting.\n')
return res[0]
return res[0][0], res[0][1]

################
## Reflection ##
Expand All @@ -164,7 +175,7 @@ def optimize(func, x_start, step,
xr = x0 + alpha*(x0 - res[-1][0])
rscore = obj(xr)
# Check bounds
for j, xr_j in enumerate(xr):
for j, _ in enumerate(xr):
if ((xr[j] < lb[j]) | (xr[j] > ub[j])):
rscore = np.inf
if res[0][1] <= rscore < res[-2][1]:
Expand All @@ -180,7 +191,7 @@ def optimize(func, x_start, step,
xe = x0 + gamma*(x0 - res[-1][0])
escore = obj(xe)
# Check bounds
for j, xe_j in enumerate(xe):
for j, _ in enumerate(xe):
if ((xe[j] < lb[j]) | (xe[j] > ub[j])):
escore = np.inf
if escore < rscore:
Expand All @@ -199,7 +210,7 @@ def optimize(func, x_start, step,
xc = x0 + rho*(x0 - res[-1][0])
cscore = obj(xc)
# Check bounds
for j, xc_j in enumerate(xc):
for j, _ in enumerate(xc):
if ((xc[j] < lb[j]) | (xc[j] > ub[j])):
escore = np.inf
if cscore < res[-1][1]:
Expand Down Expand Up @@ -229,7 +240,7 @@ def optimize(func, x_start, step,
score.append(obj(x))
# Check bounds
for i,x in enumerate(mp_args):
for j, x_j in enumerate(x):
for j, _ in enumerate(x):
if ((x[j] < lb[j]) | (x[j] > ub[j])):
score[i] = np.inf
# Construct nres
Expand Down
67 changes: 30 additions & 37 deletions src/pySODM/optimization/pso.py
Original file line number Diff line number Diff line change
Expand Up @@ -3,6 +3,9 @@
from functools import partial

def _obj_wrapper(func, args, kwargs, x):
"""
A posterior probability must be maximised; so we switch signs
"""
return -func(x, *args, **kwargs)


Expand All @@ -22,34 +25,39 @@ def _cons_f_ieqcons_wrapper(f_ieqcons, args, kwargs, x):
return np.array(f_ieqcons(x, *args, **kwargs))


def optimize(func, bounds=None, ieqcons=[], f_ieqcons=None, args=(), kwargs={},
processes=1, swarmsize=100, max_iter=100, minstep=1e-12, minfunc=1e-12, omega=0.8, phip=0.8, phig=0.8,
debug=False, particle_output=False, transform_pars=None):
def optimize(func, bounds=None, args=(), kwargs={},
ieqcons=[], f_ieqcons=None, processes=1,
swarmsize=100, max_iter=100, minstep=1e-12,
minfunc=1e-12, omega=0.8, phip=0.8, phig=0.8,
debug=False, transform_pars=None):
"""
Perform a particle swarm optimization (PSO)
Perform a particle swarm optimization (PSO) -- minimization of an objective function

Parameters
==========

func : callable function or class 'log_posterior_probability' (~/src/optimization/objective_functions.py)
The objective function to be minimized
bounds: tuple array
The bounds of the design variable(s). In form [(lower, upper), ..., (lower, upper)]
Class 'log_posterior_probability' automatically contains bounds. If bounds are provided these overwrite the bounds available in the 'log_posterior_probability' object.
bounds: list containing tuples
The bounds of the parameter(s). In the form: [(lower, upper), ..., (lower, upper)].
If `func` is pySODM class 'log_posterior_probability', bounds are automatically inferred.
If bounds are provided anyway these overwrite the bounds available in the 'log_posterior_probability' object.

Optional
========

args : tuple
Additional arguments passed to objective function
(Default: empty tuple)
kwargs : dict
Additional keyword arguments passed to objective function
ieqcons : list
A list of functions of length n such that ieqcons[j](x,*args) >= 0.0 in
a successfully optimized problem (Default: [])
f_ieqcons : function
Returns a 1-D array in which each element must be greater or equal
to 0.0 in a successfully optimized problem. If f_ieqcons is specified,
ieqcons is ignored (Default: None)
args : tuple
Additional arguments passed to objective function
(Default: empty tuple)
kwargs : dict
Additional keyword arguments passed to objective function
phig : scalar
Scaling factor to search away from the swarm's best known position
(Default: 0.5)
Expand All @@ -67,32 +75,26 @@ def optimize(func, bounds=None, ieqcons=[], f_ieqcons=None, args=(), kwargs={},
processes : int
The number of processes to use to evaluate objective function and
constraints (default: 1)
particle_output : boolean
Whether to include the best per-particle position and the objective
values at those.
transform_pars : None / function
Transform the parameter values. E.g. to integer values or to map to
a list of possibilities.

Returns
=======
g : array
The swarm's best known position (optimal design)
f : scalar
The objective value at ``g``
p : array
The best known position per particle
pf: arrray
The objective values at each position in p

theta: list
optimised parameter values

score: float
corresponding objective function value
"""

if not bounds:
try:
bounds = func.expanded_bounds
except:
raise Exception(
"'func' does not appear to be a pySODM model: 'expanded_bounds' not found. Provide bounds directly to `pso.optimize()`"
"please provide 'bounds'."
)

lb, ub = [], []
Expand Down Expand Up @@ -146,7 +148,6 @@ def optimize(func, bounds=None, ieqcons=[], f_ieqcons=None, args=(), kwargs={},
import multiprocessing
mp_pool = multiprocessing.Pool(processes)


# Initialize the particle swarm ############################################
S = swarmsize
D = len(lb) # the number of dimensions each particle has
Expand Down Expand Up @@ -241,18 +242,12 @@ def optimize(func, bounds=None, ieqcons=[], f_ieqcons=None, args=(), kwargs={},
print('Stopping search: Swarm best objective change less than {:}'\
.format(minfunc))
sys.stdout.flush()
if particle_output:
return p_min, fp[i_min], p, fp
else:
return p_min, fp[i_min]
return p_min, fp[i_min]
elif stepsize <= minstep:
print('Stopping search: Swarm best position change less than {:}'\
.format(minstep))
sys.stdout.flush()
if particle_output:
return p_min, fp[i_min], p, fp
else:
return p_min, fp[i_min]
return p_min, fp[i_min]
else:
g = p_min.copy()
fg = fp[i_min]
Expand All @@ -271,7 +266,5 @@ def optimize(func, bounds=None, ieqcons=[], f_ieqcons=None, args=(), kwargs={},
if not is_feasible(g):
print("However, the optimization couldn't find a feasible design. Sorry")
sys.stdout.flush()
if particle_output:
return g, fg, p, fp
else:
return g, fg

return g, fg
Loading
Loading