This repository has been archived by the owner on Jul 16, 2024. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 86
Test Data (1111_20)
magnific0 edited this page Feb 25, 2014
·
1 revision
Trials: 200 - Population size: 20 - Generations: 500
Testing problem: Schwefel, Dimension: 10
With Population Size: 20
Algorithm name: Particle Swarm optimization - gen:500 omega:0.7298 eta1:2.05 eta2:2.05 variant:5 topology:2 topology param.:4
Best: 9.09494701773e-12
Mean: 639.183696525
Std: 239.460542506
Algorithm name: Differential Evolution - gen:500 F: 0.8 CR: 0.9 variant:2 ftol:1e-30 xtol:1e-30
Best: 2.70486925729e-05
Mean: 2.96424816623
Std: 21.9586689732
Algorithm name: DE - Self adaptive - gen:500 variant:2 self_adaptation:1 restart:1 ftol:1e-30 xtol:1e-30
Best: 0.0
Mean: 10.0672584422
Std: 35.0895429231
Algorithm name: DE - 1220 - gen:500 self_adaptation:1 variants:[1, 2, 3, 4, 5, 6, 7, 8, 9, 10] restart:1 ftol:1e-30 xtol:1e-30
Best: 5.45696821064e-12
Mean: 1.18438364311
Std: 11.7844654728
Algorithm name: Simulated Annealing (Corana's) - iter:10000 Ts:1 Tf:0.01 steps:1 bin_size:20 range:1
Best: 0.0322138795518
Mean: 309.790169703
Std: 166.472069028
Algorithm name: Improved Harmony Search - iter:10000 phmcr:0.85 ppar_min:0.35 ppar_max:0.99 bw_min:1e-05 bw_max:1
Best: 3.01751915686e-05
Mean: 7.97888534862e-05
Std: 2.71583577897e-05
Algorithm name: A Simple Genetic Algorithm - gen:500 CR:0.95 M:0.02 elitism:1 mutation:GAUSSIAN (0.1) selection:ROULETTE crossover:EXPONENTIAL
Best: 119.36228459
Mean: 480.717407554
Std: 181.487110172
Algorithm name: CMAES - gen:500 cc:-1 cs:-1 c1:-1 cmu:-1 sigma0:0.5 ftol:1e-30 xtol:1e-30 restart:1
Best: 671.15600801
Mean: 1586.11590551
Std: 389.844857737
Algorithm name: Artificial Bee Colony optimization - gen:250 limit:20
Best: 76.8513687971
Mean: 377.865976175
Std: 130.040422801
Testing problem: Rastrigin, Dimension: 10
With Population Size: 20
Algorithm name: Particle Swarm optimization - gen:500 omega:0.7298 eta1:2.05 eta2:2.05 variant:5 topology:2 topology param.:4
Best: 0.994959057234
Mean: 6.28589590568
Std: 2.96581227649
Algorithm name: Differential Evolution - gen:500 F: 0.8 CR: 0.9 variant:2 ftol:1e-30 xtol:1e-30
Best: 0.845804743028
Mean: 5.36923423977
Std: 2.07736707777
Algorithm name: DE - Self adaptive - gen:500 variant:2 self_adaptation:1 restart:1 ftol:1e-30 xtol:1e-30
Best: 0.0
Mean: 0.0149243858566
Std: 0.120939718811
Algorithm name: DE - 1220 - gen:500 self_adaptation:1 variants:[1, 2, 3, 4, 5, 6, 7, 8, 9, 10] restart:1 ftol:1e-30 xtol:1e-30
Best: 0.0
Mean: 3.5527136788e-16
Std: 4.12788027355e-15
Algorithm name: Simulated Annealing (Corana's) - iter:10000 Ts:1 Tf:0.01 steps:1 bin_size:20 range:1
Best: 0.0447910972915
Mean: 5.69556020488
Std: 2.58790980865
Algorithm name: Improved Harmony Search - iter:10000 phmcr:0.85 ppar_min:0.35 ppar_max:0.99 bw_min:1e-05 bw_max:1
Best: 5.40544067462e-06
Mean: 0.147384864087
Std: 0.233536264313
Algorithm name: A Simple Genetic Algorithm - gen:500 CR:0.95 M:0.02 elitism:1 mutation:GAUSSIAN (0.1) selection:ROULETTE crossover:EXPONENTIAL
Best: 0.134677002346
Mean: 1.10497220369
Std: 0.627443822634
Algorithm name: CMAES - gen:500 cc:-1 cs:-1 c1:-1 cmu:-1 sigma0:0.5 ftol:1e-30 xtol:1e-30 restart:1
Best: 2.98487717128
Mean: 26.0228034038
Std: 14.65384869
Algorithm name: Artificial Bee Colony optimization - gen:250 limit:20
Best: 0.0135495905905
Mean: 3.07314131761
Std: 1.55480828659
Testing problem: Rosenbrock, Dimension: 10
With Population Size: 20
Algorithm name: Particle Swarm optimization - gen:500 omega:0.7298 eta1:2.05 eta2:2.05 variant:5 topology:2 topology param.:4
Best: 0.0128076312135
Mean: 5.07074302196
Std: 5.02609285629
Algorithm name: Differential Evolution - gen:500 F: 0.8 CR: 0.9 variant:2 ftol:1e-30 xtol:1e-30
Best: 0.238004974492
Mean: 1.70751694914
Std: 0.749033688867
Algorithm name: DE - Self adaptive - gen:500 variant:2 self_adaptation:1 restart:1 ftol:1e-30 xtol:1e-30
Best: 4.15288033619e-05
Mean: 3.28786190913
Std: 2.08771087093
Algorithm name: DE - 1220 - gen:500 self_adaptation:1 variants:[1, 2, 3, 4, 5, 6, 7, 8, 9, 10] restart:1 ftol:1e-30 xtol:1e-30
Best: 4.36478856514
Mean: 5.7601409535
Std: 0.422272416648
Algorithm name: Simulated Annealing (Corana's) - iter:10000 Ts:1 Tf:0.01 steps:1 bin_size:20 range:1
Best: 0.0284415407244
Mean: 3.7057954378
Std: 11.0318505374
Algorithm name: Improved Harmony Search - iter:10000 phmcr:0.85 ppar_min:0.35 ppar_max:0.99 bw_min:1e-05 bw_max:1
Best: 1.32739184789
Mean: 27.6023196137
Std: 28.477446475
Algorithm name: A Simple Genetic Algorithm - gen:500 CR:0.95 M:0.02 elitism:1 mutation:GAUSSIAN (0.1) selection:ROULETTE crossover:EXPONENTIAL
Best: 0.731818610257
Mean: 77.7715802074
Std: 187.568538268
Algorithm name: CMAES - gen:500 cc:-1 cs:-1 c1:-1 cmu:-1 sigma0:0.5 ftol:1e-30 xtol:1e-30 restart:1
Best: 7.40789693809e-30
Mean: 0.319665263329
Std: 1.08133915167
Algorithm name: Artificial Bee Colony optimization - gen:250 limit:20
Best: 0.276123250813
Mean: 6.06779219792
Std: 4.57750846423
Testing problem: Ackley, Dimension: 10
With Population Size: 20
Algorithm name: Particle Swarm optimization - gen:500 omega:0.7298 eta1:2.05 eta2:2.05 variant:5 topology:2 topology param.:4
Best: 3.15705759313e-08
Mean: 3.85175489548e-07
Std: 3.17082442809e-07
Algorithm name: Differential Evolution - gen:500 F: 0.8 CR: 0.9 variant:2 ftol:1e-30 xtol:1e-30
Best: 3.24986305817e-05
Mean: 0.000186299620702
Std: 0.000102707322153
Algorithm name: DE - Self adaptive - gen:500 variant:2 self_adaptation:1 restart:1 ftol:1e-30 xtol:1e-30
Best: 1.05821573726e-10
Mean: 1.21588437096e-09
Std: 9.20860656527e-10
Algorithm name: DE - 1220 - gen:500 self_adaptation:1 variants:[1, 2, 3, 4, 5, 6, 7, 8, 9, 10] restart:1 ftol:1e-30 xtol:1e-30
Best: 4.4408920985e-16
Mean: 1.87013071695e-12
Std: 7.60736998438e-12
Algorithm name: Simulated Annealing (Corana's) - iter:10000 Ts:1 Tf:0.01 steps:1 bin_size:20 range:1
Best: 0.0334509025373
Mean: 0.0933964047108
Std: 0.0333917589406
Algorithm name: Improved Harmony Search - iter:10000 phmcr:0.85 ppar_min:0.35 ppar_max:0.99 bw_min:1e-05 bw_max:1
Best: 0.000844412972985
Mean: 0.00552043610464
Std: 0.0576593377003
Algorithm name: A Simple Genetic Algorithm - gen:500 CR:0.95 M:0.02 elitism:1 mutation:GAUSSIAN (0.1) selection:ROULETTE crossover:EXPONENTIAL
Best: 0.235085960537
Mean: 0.590216088188
Std: 0.212336522897
Algorithm name: CMAES - gen:500 cc:-1 cs:-1 c1:-1 cmu:-1 sigma0:0.5 ftol:1e-30 xtol:1e-30 restart:1
Best: 3.99680288865e-15
Mean: 10.3761566955
Std: 8.05125587489
Algorithm name: Artificial Bee Colony optimization - gen:250 limit:20
Best: 0.000135737495491
Mean: 0.0849149195177
Std: 0.188089357476
Testing problem: Griewank, Dimension: 10
With Population Size: 20
Algorithm name: Particle Swarm optimization - gen:500 omega:0.7298 eta1:2.05 eta2:2.05 variant:5 topology:2 topology param.:4
Best: 7.91022891633e-09
Mean: 0.0578205421734
Std: 0.032337395909
Algorithm name: Differential Evolution - gen:500 F: 0.8 CR: 0.9 variant:2 ftol:1e-30 xtol:1e-30
Best: 0.085365346118
Mean: 0.222144271632
Std: 0.0626901828202
Algorithm name: DE - Self adaptive - gen:500 variant:2 self_adaptation:1 restart:1 ftol:1e-30 xtol:1e-30
Best: 9.84101689028e-13
Mean: 0.00461292603873
Std: 0.00586192021124
Algorithm name: DE - 1220 - gen:500 self_adaptation:1 variants:[1, 2, 3, 4, 5, 6, 7, 8, 9, 10] restart:1 ftol:1e-30 xtol:1e-30
Best: 0.0
Mean: 3.4174298058e-06
Std: 2.63649874526e-05
Algorithm name: Simulated Annealing (Corana's) - iter:10000 Ts:1 Tf:0.01 steps:1 bin_size:20 range:1
Best: 0.104218738629
Mean: 0.33104689631
Std: 0.129698975047
Algorithm name: Improved Harmony Search - iter:10000 phmcr:0.85 ppar_min:0.35 ppar_max:0.99 bw_min:1e-05 bw_max:1
Best: 6.59889500346e-05
Mean: 0.026720228153
Std: 0.0176298523194
Algorithm name: A Simple Genetic Algorithm - gen:500 CR:0.95 M:0.02 elitism:1 mutation:GAUSSIAN (0.1) selection:ROULETTE crossover:EXPONENTIAL
Best: 0.314884608085
Mean: 0.79118585788
Std: 0.21117369502
Algorithm name: CMAES - gen:500 cc:-1 cs:-1 c1:-1 cmu:-1 sigma0:0.5 ftol:1e-30 xtol:1e-30 restart:1
Best: 0.0
Mean: 0.133202544057
Std: 0.234940653027
Algorithm name: Artificial Bee Colony optimization - gen:250 limit:20
Best: 0.000885059910185
Mean: 0.0848853756457
Std: 0.0548405053581
Testing problem: Levy5, Dimension: 10
With Population Size: 20
Algorithm name: Particle Swarm optimization - gen:500 omega:0.7298 eta1:2.05 eta2:2.05 variant:5 topology:2 topology param.:4
Best: -4338.91401286
Mean: -3467.62111553
Std: 493.417298115
Algorithm name: Differential Evolution - gen:500 F: 0.8 CR: 0.9 variant:2 ftol:1e-30 xtol:1e-30
Best: -3702.6540852
Mean: -2595.65511404
Std: 363.148935458
Algorithm name: DE - Self adaptive - gen:500 variant:2 self_adaptation:1 restart:1 ftol:1e-30 xtol:1e-30
Best: -4411.52296726
Mean: -4348.70763776
Std: 69.1827430606
Algorithm name: DE - 1220 - gen:500 self_adaptation:1 variants:[1, 2, 3, 4, 5, 6, 7, 8, 9, 10] restart:1 ftol:1e-30 xtol:1e-30
Best: -4411.52296338
Mean: -4254.72683912
Std: 136.55050931
Algorithm name: Simulated Annealing (Corana's) - iter:10000 Ts:1 Tf:0.01 steps:1 bin_size:20 range:1
Best: -4332.54106357
Mean: -3606.31389147
Std: 381.57483735
Algorithm name: Improved Harmony Search - iter:10000 phmcr:0.85 ppar_min:0.35 ppar_max:0.99 bw_min:1e-05 bw_max:1
Best: -4411.38956674
Mean: -4083.41614994
Std: 284.502500327
Algorithm name: A Simple Genetic Algorithm - gen:500 CR:0.95 M:0.02 elitism:1 mutation:GAUSSIAN (0.1) selection:ROULETTE crossover:EXPONENTIAL
Best: -4123.92447697
Mean: -3397.27664522
Std: 441.130634408
Algorithm name: CMAES - gen:500 cc:-1 cs:-1 c1:-1 cmu:-1 sigma0:0.5 ftol:1e-30 xtol:1e-30 restart:1
Best: -3412.85102763
Mean: 2375.0180027
Std: 6712.85846752
Algorithm name: Artificial Bee Colony optimization - gen:250 limit:20
Best: -3737.55064794
Mean: -2923.58419302
Std: 399.024506723
Testing problem: Cassini 1, Dimension: 6
With Population Size: 20
Algorithm name: Particle Swarm optimization - gen:500 omega:0.7298 eta1:2.05 eta2:2.05 variant:5 topology:2 topology param.:4
Best: 5.13456508908
Mean: 12.6246333297
Std: 3.44667156787
Algorithm name: Differential Evolution - gen:500 F: 0.8 CR: 0.9 variant:2 ftol:1e-30 xtol:1e-30
Best: 5.30342397022
Mean: 9.30510259229
Std: 3.54520994696
Algorithm name: DE - Self adaptive - gen:500 variant:2 self_adaptation:1 restart:1 ftol:1e-30 xtol:1e-30
Best: 4.97883084506
Mean: 8.88223553081
Std: 3.29062825584
Algorithm name: DE - 1220 - gen:500 self_adaptation:1 variants:[1, 2, 3, 4, 5, 6, 7, 8, 9, 10] restart:1 ftol:1e-30 xtol:1e-30
Best: 5.54641977256
Mean: 10.3712624062
Std: 3.52464416001
Algorithm name: Simulated Annealing (Corana's) - iter:10000 Ts:1 Tf:0.01 steps:1 bin_size:20 range:1
Best: 5.34904899993
Mean: 20.048316166
Std: 12.1445634098
Algorithm name: Improved Harmony Search - iter:10000 phmcr:0.85 ppar_min:0.35 ppar_max:0.99 bw_min:1e-05 bw_max:1
Best: 5.34714652746
Mean: 12.5229682632
Std: 3.14986564134
Algorithm name: A Simple Genetic Algorithm - gen:500 CR:0.95 M:0.02 elitism:1 mutation:GAUSSIAN (0.1) selection:ROULETTE crossover:EXPONENTIAL
Best: 6.30703434647
Mean: 31.0608918698
Std: 17.795077809
Algorithm name: CMAES - gen:500 cc:-1 cs:-1 c1:-1 cmu:-1 sigma0:0.5 ftol:1e-30 xtol:1e-30 restart:1
Best: 5.18789835963
Mean: 18.5526457289
Std: 11.5434756729
Algorithm name: Artificial Bee Colony optimization - gen:250 limit:20
Best: 5.99526083801
Mean: 12.3793794964
Std: 3.2487929982
Testing problem: GTOC_1, Dimension: 8
With Population Size: 20
Algorithm name: Particle Swarm optimization - gen:500 omega:0.7298 eta1:2.05 eta2:2.05 variant:5 topology:2 topology param.:4
Best: -998208.220339
Mean: -424725.546435
Std: 275446.015388
Algorithm name: Differential Evolution - gen:500 F: 0.8 CR: 0.9 variant:2 ftol:1e-30 xtol:1e-30
Best: -921714.813626
Mean: -267281.545525
Std: 147401.169371
Algorithm name: DE - Self adaptive - gen:500 variant:2 self_adaptation:1 restart:1 ftol:1e-30 xtol:1e-30
Best: -955102.491141
Mean: -388459.048025
Std: 175548.871584
Algorithm name: DE - 1220 - gen:500 self_adaptation:1 variants:[1, 2, 3, 4, 5, 6, 7, 8, 9, 10] restart:1 ftol:1e-30 xtol:1e-30
Best: -826634.923343
Mean: -431728.105479
Std: 147394.949029
Algorithm name: Simulated Annealing (Corana's) - iter:10000 Ts:1 Tf:0.01 steps:1 bin_size:20 range:1
Best: -704071.631519
Mean: -72288.2437947
Std: 130772.148558
Algorithm name: Improved Harmony Search - iter:10000 phmcr:0.85 ppar_min:0.35 ppar_max:0.99 bw_min:1e-05 bw_max:1
Best: -1162602.59055
Mean: -711777.743437
Std: 196905.326783
Algorithm name: A Simple Genetic Algorithm - gen:500 CR:0.95 M:0.02 elitism:1 mutation:GAUSSIAN (0.1) selection:ROULETTE crossover:EXPONENTIAL
Best: -863046.788195
Mean: -83057.9175561
Std: 153151.963069
Algorithm name: CMAES - gen:500 cc:-1 cs:-1 c1:-1 cmu:-1 sigma0:0.5 ftol:1e-30 xtol:1e-30 restart:1
Best: -1077012.50033
Mean: -108891.989264
Std: 202073.046386
Algorithm name: Artificial Bee Colony optimization - gen:250 limit:20
Best: -868690.842365
Mean: -203558.475278
Std: 174041.415709
Testing problem: Cassini 2, Dimension: 22
With Population Size: 20
Algorithm name: Particle Swarm optimization - gen:500 omega:0.7298 eta1:2.05 eta2:2.05 variant:5 topology:2 topology param.:4
Best: 12.3214770193
Mean: 22.8615502991
Std: 3.70534701066
Algorithm name: Differential Evolution - gen:500 F: 0.8 CR: 0.9 variant:2 ftol:1e-30 xtol:1e-30
Best: 19.3922655269
Mean: 29.5767514165
Std: 2.67839006008
Algorithm name: DE - Self adaptive - gen:500 variant:2 self_adaptation:1 restart:1 ftol:1e-30 xtol:1e-30
Best: 16.7925663831
Mean: 26.2944397562
Std: 2.94029014226
Algorithm name: DE - 1220 - gen:500 self_adaptation:1 variants:[1, 2, 3, 4, 5, 6, 7, 8, 9, 10] restart:1 ftol:1e-30 xtol:1e-30
Best: 13.3158911009
Mean: 24.3606836727
Std: 3.83352440443
Algorithm name: Simulated Annealing (Corana's) - iter:10000 Ts:1 Tf:0.01 steps:1 bin_size:20 range:1
Best: 11.6873202425
Mean: 25.8310723572
Std: 6.60952826373
Algorithm name: Improved Harmony Search - iter:10000 phmcr:0.85 ppar_min:0.35 ppar_max:0.99 bw_min:1e-05 bw_max:1
Best: 12.3376881646
Mean: 21.1532083874
Std: 4.31223166473
Algorithm name: A Simple Genetic Algorithm - gen:500 CR:0.95 M:0.02 elitism:1 mutation:GAUSSIAN (0.1) selection:ROULETTE crossover:EXPONENTIAL
Best: 19.5511746668
Mean: 32.5915713664
Std: 7.05069689819
Algorithm name: CMAES - gen:500 cc:-1 cs:-1 c1:-1 cmu:-1 sigma0:0.5 ftol:1e-30 xtol:1e-30 restart:1
Best: 16.7076353673
Mean: 37.1963068137
Std: 10.8263317674
Algorithm name: Artificial Bee Colony optimization - gen:250 limit:20
Best: 19.0490287503
Mean: 29.4969210835
Std: 4.38771776161
Testing problem: Messenger full, Dimension: 26
With Population Size: 20
Algorithm name: Particle Swarm optimization - gen:500 omega:0.7298 eta1:2.05 eta2:2.05 variant:5 topology:2 topology param.:4
Best: 12.8626955779
Mean: 19.8635403917
Std: 3.59650252294
Algorithm name: Differential Evolution - gen:500 F: 0.8 CR: 0.9 variant:2 ftol:1e-30 xtol:1e-30
Best: 19.4933578617
Mean: 30.1482646739
Std: 3.77938618624
Algorithm name: DE - Self adaptive - gen:500 variant:2 self_adaptation:1 restart:1 ftol:1e-30 xtol:1e-30
Best: 16.4062397914
Mean: 26.7485796365
Std: 3.91601645907
Algorithm name: DE - 1220 - gen:500 self_adaptation:1 variants:[1, 2, 3, 4, 5, 6, 7, 8, 9, 10] restart:1 ftol:1e-30 xtol:1e-30
Best: 14.4818255463
Mean: 24.8478485265
Std: 3.65379573738
Algorithm name: Simulated Annealing (Corana's) - iter:10000 Ts:1 Tf:0.01 steps:1 bin_size:20 range:1
Best: 8.59348280596
Mean: 25.6099059573
Std: 8.97282030417
Algorithm name: Improved Harmony Search - iter:10000 phmcr:0.85 ppar_min:0.35 ppar_max:0.99 bw_min:1e-05 bw_max:1
Best: 12.3470087752
Mean: 21.8394475308
Std: 3.74888127051
Algorithm name: A Simple Genetic Algorithm - gen:500 CR:0.95 M:0.02 elitism:1 mutation:GAUSSIAN (0.1) selection:ROULETTE crossover:EXPONENTIAL
Best: 12.4963515719
Mean: 30.880292139
Std: 8.6855587624
Algorithm name: CMAES - gen:500 cc:-1 cs:-1 c1:-1 cmu:-1 sigma0:0.5 ftol:1e-30 xtol:1e-30 restart:1
Best: 16.5402709088
Mean: 39.0999716639
Std: 14.0695549792
Algorithm name: Artificial Bee Colony optimization - gen:250 limit:20
Best: 17.0578112856
Mean: 31.8662775879
Std: 5.16178984201