Skip to content
This repository has been archived by the owner on Jul 16, 2024. It is now read-only.

Test Data (1111_20)

magnific0 edited this page Feb 25, 2014 · 1 revision
Trials: 200 - Population size: 20 - Generations: 500
Testing problem: Schwefel, Dimension: 10
With Population Size: 20
    Algorithm name: Particle Swarm optimization - gen:500 omega:0.7298 eta1:2.05 eta2:2.05 variant:5 topology:2 topology param.:4 
    Best:  9.09494701773e-12
    Mean:  639.183696525
    Std:   239.460542506
    Algorithm name: Differential Evolution - gen:500 F: 0.8 CR: 0.9 variant:2 ftol:1e-30 xtol:1e-30
    Best:  2.70486925729e-05
    Mean:  2.96424816623
    Std:   21.9586689732
    Algorithm name: DE - Self adaptive - gen:500 variant:2 self_adaptation:1 restart:1 ftol:1e-30 xtol:1e-30
    Best:  0.0
    Mean:  10.0672584422
    Std:   35.0895429231
    Algorithm name: DE - 1220 - gen:500 self_adaptation:1 variants:[1, 2, 3, 4, 5, 6, 7, 8, 9, 10] restart:1 ftol:1e-30 xtol:1e-30
    Best:  5.45696821064e-12
    Mean:  1.18438364311
    Std:   11.7844654728
    Algorithm name: Simulated Annealing (Corana's) - iter:10000 Ts:1 Tf:0.01 steps:1 bin_size:20 range:1 
    Best:  0.0322138795518
    Mean:  309.790169703
    Std:   166.472069028
    Algorithm name: Improved Harmony Search - iter:10000 phmcr:0.85 ppar_min:0.35 ppar_max:0.99 bw_min:1e-05 bw_max:1 
    Best:  3.01751915686e-05
    Mean:  7.97888534862e-05
    Std:   2.71583577897e-05
    Algorithm name: A Simple Genetic Algorithm - gen:500 CR:0.95 M:0.02 elitism:1 mutation:GAUSSIAN (0.1) selection:ROULETTE crossover:EXPONENTIAL 
    Best:  119.36228459
    Mean:  480.717407554
    Std:   181.487110172
    Algorithm name: CMAES - gen:500 cc:-1 cs:-1 c1:-1 cmu:-1 sigma0:0.5 ftol:1e-30 xtol:1e-30 restart:1
    Best:  671.15600801
    Mean:  1586.11590551
    Std:   389.844857737
    Algorithm name: Artificial Bee Colony optimization - gen:250 limit:20 
    Best:  76.8513687971
    Mean:  377.865976175
    Std:   130.040422801
Testing problem: Rastrigin, Dimension: 10
With Population Size: 20
    Algorithm name: Particle Swarm optimization - gen:500 omega:0.7298 eta1:2.05 eta2:2.05 variant:5 topology:2 topology param.:4 
    Best:  0.994959057234
    Mean:  6.28589590568
    Std:   2.96581227649
    Algorithm name: Differential Evolution - gen:500 F: 0.8 CR: 0.9 variant:2 ftol:1e-30 xtol:1e-30
    Best:  0.845804743028
    Mean:  5.36923423977
    Std:   2.07736707777
    Algorithm name: DE - Self adaptive - gen:500 variant:2 self_adaptation:1 restart:1 ftol:1e-30 xtol:1e-30
    Best:  0.0
    Mean:  0.0149243858566
    Std:   0.120939718811
    Algorithm name: DE - 1220 - gen:500 self_adaptation:1 variants:[1, 2, 3, 4, 5, 6, 7, 8, 9, 10] restart:1 ftol:1e-30 xtol:1e-30
    Best:  0.0
    Mean:  3.5527136788e-16
    Std:   4.12788027355e-15
    Algorithm name: Simulated Annealing (Corana's) - iter:10000 Ts:1 Tf:0.01 steps:1 bin_size:20 range:1 
    Best:  0.0447910972915
    Mean:  5.69556020488
    Std:   2.58790980865
    Algorithm name: Improved Harmony Search - iter:10000 phmcr:0.85 ppar_min:0.35 ppar_max:0.99 bw_min:1e-05 bw_max:1 
    Best:  5.40544067462e-06
    Mean:  0.147384864087
    Std:   0.233536264313
    Algorithm name: A Simple Genetic Algorithm - gen:500 CR:0.95 M:0.02 elitism:1 mutation:GAUSSIAN (0.1) selection:ROULETTE crossover:EXPONENTIAL 
    Best:  0.134677002346
    Mean:  1.10497220369
    Std:   0.627443822634
    Algorithm name: CMAES - gen:500 cc:-1 cs:-1 c1:-1 cmu:-1 sigma0:0.5 ftol:1e-30 xtol:1e-30 restart:1
    Best:  2.98487717128
    Mean:  26.0228034038
    Std:   14.65384869
    Algorithm name: Artificial Bee Colony optimization - gen:250 limit:20 
    Best:  0.0135495905905
    Mean:  3.07314131761
    Std:   1.55480828659
Testing problem: Rosenbrock, Dimension: 10
With Population Size: 20
    Algorithm name: Particle Swarm optimization - gen:500 omega:0.7298 eta1:2.05 eta2:2.05 variant:5 topology:2 topology param.:4 
    Best:  0.0128076312135
    Mean:  5.07074302196
    Std:   5.02609285629
    Algorithm name: Differential Evolution - gen:500 F: 0.8 CR: 0.9 variant:2 ftol:1e-30 xtol:1e-30
    Best:  0.238004974492
    Mean:  1.70751694914
    Std:   0.749033688867
    Algorithm name: DE - Self adaptive - gen:500 variant:2 self_adaptation:1 restart:1 ftol:1e-30 xtol:1e-30
    Best:  4.15288033619e-05
    Mean:  3.28786190913
    Std:   2.08771087093
    Algorithm name: DE - 1220 - gen:500 self_adaptation:1 variants:[1, 2, 3, 4, 5, 6, 7, 8, 9, 10] restart:1 ftol:1e-30 xtol:1e-30
    Best:  4.36478856514
    Mean:  5.7601409535
    Std:   0.422272416648
    Algorithm name: Simulated Annealing (Corana's) - iter:10000 Ts:1 Tf:0.01 steps:1 bin_size:20 range:1 
    Best:  0.0284415407244
    Mean:  3.7057954378
    Std:   11.0318505374
    Algorithm name: Improved Harmony Search - iter:10000 phmcr:0.85 ppar_min:0.35 ppar_max:0.99 bw_min:1e-05 bw_max:1 
    Best:  1.32739184789
    Mean:  27.6023196137
    Std:   28.477446475
    Algorithm name: A Simple Genetic Algorithm - gen:500 CR:0.95 M:0.02 elitism:1 mutation:GAUSSIAN (0.1) selection:ROULETTE crossover:EXPONENTIAL 
    Best:  0.731818610257
    Mean:  77.7715802074
    Std:   187.568538268
    Algorithm name: CMAES - gen:500 cc:-1 cs:-1 c1:-1 cmu:-1 sigma0:0.5 ftol:1e-30 xtol:1e-30 restart:1
    Best:  7.40789693809e-30
    Mean:  0.319665263329
    Std:   1.08133915167
    Algorithm name: Artificial Bee Colony optimization - gen:250 limit:20 
    Best:  0.276123250813
    Mean:  6.06779219792
    Std:   4.57750846423
Testing problem: Ackley, Dimension: 10
With Population Size: 20
    Algorithm name: Particle Swarm optimization - gen:500 omega:0.7298 eta1:2.05 eta2:2.05 variant:5 topology:2 topology param.:4 
    Best:  3.15705759313e-08
    Mean:  3.85175489548e-07
    Std:   3.17082442809e-07
    Algorithm name: Differential Evolution - gen:500 F: 0.8 CR: 0.9 variant:2 ftol:1e-30 xtol:1e-30
    Best:  3.24986305817e-05
    Mean:  0.000186299620702
    Std:   0.000102707322153
    Algorithm name: DE - Self adaptive - gen:500 variant:2 self_adaptation:1 restart:1 ftol:1e-30 xtol:1e-30
    Best:  1.05821573726e-10
    Mean:  1.21588437096e-09
    Std:   9.20860656527e-10
    Algorithm name: DE - 1220 - gen:500 self_adaptation:1 variants:[1, 2, 3, 4, 5, 6, 7, 8, 9, 10] restart:1 ftol:1e-30 xtol:1e-30
    Best:  4.4408920985e-16
    Mean:  1.87013071695e-12
    Std:   7.60736998438e-12
    Algorithm name: Simulated Annealing (Corana's) - iter:10000 Ts:1 Tf:0.01 steps:1 bin_size:20 range:1 
    Best:  0.0334509025373
    Mean:  0.0933964047108
    Std:   0.0333917589406
    Algorithm name: Improved Harmony Search - iter:10000 phmcr:0.85 ppar_min:0.35 ppar_max:0.99 bw_min:1e-05 bw_max:1 
    Best:  0.000844412972985
    Mean:  0.00552043610464
    Std:   0.0576593377003
    Algorithm name: A Simple Genetic Algorithm - gen:500 CR:0.95 M:0.02 elitism:1 mutation:GAUSSIAN (0.1) selection:ROULETTE crossover:EXPONENTIAL 
    Best:  0.235085960537
    Mean:  0.590216088188
    Std:   0.212336522897
    Algorithm name: CMAES - gen:500 cc:-1 cs:-1 c1:-1 cmu:-1 sigma0:0.5 ftol:1e-30 xtol:1e-30 restart:1
    Best:  3.99680288865e-15
    Mean:  10.3761566955
    Std:   8.05125587489
    Algorithm name: Artificial Bee Colony optimization - gen:250 limit:20 
    Best:  0.000135737495491
    Mean:  0.0849149195177
    Std:   0.188089357476
Testing problem: Griewank, Dimension: 10
With Population Size: 20
    Algorithm name: Particle Swarm optimization - gen:500 omega:0.7298 eta1:2.05 eta2:2.05 variant:5 topology:2 topology param.:4 
    Best:  7.91022891633e-09
    Mean:  0.0578205421734
    Std:   0.032337395909
    Algorithm name: Differential Evolution - gen:500 F: 0.8 CR: 0.9 variant:2 ftol:1e-30 xtol:1e-30
    Best:  0.085365346118
    Mean:  0.222144271632
    Std:   0.0626901828202
    Algorithm name: DE - Self adaptive - gen:500 variant:2 self_adaptation:1 restart:1 ftol:1e-30 xtol:1e-30
    Best:  9.84101689028e-13
    Mean:  0.00461292603873
    Std:   0.00586192021124
    Algorithm name: DE - 1220 - gen:500 self_adaptation:1 variants:[1, 2, 3, 4, 5, 6, 7, 8, 9, 10] restart:1 ftol:1e-30 xtol:1e-30
    Best:  0.0
    Mean:  3.4174298058e-06
    Std:   2.63649874526e-05
    Algorithm name: Simulated Annealing (Corana's) - iter:10000 Ts:1 Tf:0.01 steps:1 bin_size:20 range:1 
    Best:  0.104218738629
    Mean:  0.33104689631
    Std:   0.129698975047
    Algorithm name: Improved Harmony Search - iter:10000 phmcr:0.85 ppar_min:0.35 ppar_max:0.99 bw_min:1e-05 bw_max:1 
    Best:  6.59889500346e-05
    Mean:  0.026720228153
    Std:   0.0176298523194
    Algorithm name: A Simple Genetic Algorithm - gen:500 CR:0.95 M:0.02 elitism:1 mutation:GAUSSIAN (0.1) selection:ROULETTE crossover:EXPONENTIAL 
    Best:  0.314884608085
    Mean:  0.79118585788
    Std:   0.21117369502
    Algorithm name: CMAES - gen:500 cc:-1 cs:-1 c1:-1 cmu:-1 sigma0:0.5 ftol:1e-30 xtol:1e-30 restart:1
    Best:  0.0
    Mean:  0.133202544057
    Std:   0.234940653027
    Algorithm name: Artificial Bee Colony optimization - gen:250 limit:20 
    Best:  0.000885059910185
    Mean:  0.0848853756457
    Std:   0.0548405053581
Testing problem: Levy5, Dimension: 10
With Population Size: 20
    Algorithm name: Particle Swarm optimization - gen:500 omega:0.7298 eta1:2.05 eta2:2.05 variant:5 topology:2 topology param.:4 
    Best:  -4338.91401286
    Mean:  -3467.62111553
    Std:   493.417298115
    Algorithm name: Differential Evolution - gen:500 F: 0.8 CR: 0.9 variant:2 ftol:1e-30 xtol:1e-30
    Best:  -3702.6540852
    Mean:  -2595.65511404
    Std:   363.148935458
    Algorithm name: DE - Self adaptive - gen:500 variant:2 self_adaptation:1 restart:1 ftol:1e-30 xtol:1e-30
    Best:  -4411.52296726
    Mean:  -4348.70763776
    Std:   69.1827430606
    Algorithm name: DE - 1220 - gen:500 self_adaptation:1 variants:[1, 2, 3, 4, 5, 6, 7, 8, 9, 10] restart:1 ftol:1e-30 xtol:1e-30
    Best:  -4411.52296338
    Mean:  -4254.72683912
    Std:   136.55050931
    Algorithm name: Simulated Annealing (Corana's) - iter:10000 Ts:1 Tf:0.01 steps:1 bin_size:20 range:1 
    Best:  -4332.54106357
    Mean:  -3606.31389147
    Std:   381.57483735
    Algorithm name: Improved Harmony Search - iter:10000 phmcr:0.85 ppar_min:0.35 ppar_max:0.99 bw_min:1e-05 bw_max:1 
    Best:  -4411.38956674
    Mean:  -4083.41614994
    Std:   284.502500327
    Algorithm name: A Simple Genetic Algorithm - gen:500 CR:0.95 M:0.02 elitism:1 mutation:GAUSSIAN (0.1) selection:ROULETTE crossover:EXPONENTIAL 
    Best:  -4123.92447697
    Mean:  -3397.27664522
    Std:   441.130634408
    Algorithm name: CMAES - gen:500 cc:-1 cs:-1 c1:-1 cmu:-1 sigma0:0.5 ftol:1e-30 xtol:1e-30 restart:1
    Best:  -3412.85102763
    Mean:  2375.0180027
    Std:   6712.85846752
    Algorithm name: Artificial Bee Colony optimization - gen:250 limit:20 
    Best:  -3737.55064794
    Mean:  -2923.58419302
    Std:   399.024506723
Testing problem: Cassini 1, Dimension: 6
With Population Size: 20
    Algorithm name: Particle Swarm optimization - gen:500 omega:0.7298 eta1:2.05 eta2:2.05 variant:5 topology:2 topology param.:4 
    Best:  5.13456508908
    Mean:  12.6246333297
    Std:   3.44667156787
    Algorithm name: Differential Evolution - gen:500 F: 0.8 CR: 0.9 variant:2 ftol:1e-30 xtol:1e-30
    Best:  5.30342397022
    Mean:  9.30510259229
    Std:   3.54520994696
    Algorithm name: DE - Self adaptive - gen:500 variant:2 self_adaptation:1 restart:1 ftol:1e-30 xtol:1e-30
    Best:  4.97883084506
    Mean:  8.88223553081
    Std:   3.29062825584
    Algorithm name: DE - 1220 - gen:500 self_adaptation:1 variants:[1, 2, 3, 4, 5, 6, 7, 8, 9, 10] restart:1 ftol:1e-30 xtol:1e-30
    Best:  5.54641977256
    Mean:  10.3712624062
    Std:   3.52464416001
    Algorithm name: Simulated Annealing (Corana's) - iter:10000 Ts:1 Tf:0.01 steps:1 bin_size:20 range:1 
    Best:  5.34904899993
    Mean:  20.048316166
    Std:   12.1445634098
    Algorithm name: Improved Harmony Search - iter:10000 phmcr:0.85 ppar_min:0.35 ppar_max:0.99 bw_min:1e-05 bw_max:1 
    Best:  5.34714652746
    Mean:  12.5229682632
    Std:   3.14986564134
    Algorithm name: A Simple Genetic Algorithm - gen:500 CR:0.95 M:0.02 elitism:1 mutation:GAUSSIAN (0.1) selection:ROULETTE crossover:EXPONENTIAL 
    Best:  6.30703434647
    Mean:  31.0608918698
    Std:   17.795077809
    Algorithm name: CMAES - gen:500 cc:-1 cs:-1 c1:-1 cmu:-1 sigma0:0.5 ftol:1e-30 xtol:1e-30 restart:1
    Best:  5.18789835963
    Mean:  18.5526457289
    Std:   11.5434756729
    Algorithm name: Artificial Bee Colony optimization - gen:250 limit:20 
    Best:  5.99526083801
    Mean:  12.3793794964
    Std:   3.2487929982
Testing problem: GTOC_1, Dimension: 8
With Population Size: 20
    Algorithm name: Particle Swarm optimization - gen:500 omega:0.7298 eta1:2.05 eta2:2.05 variant:5 topology:2 topology param.:4 
    Best:  -998208.220339
    Mean:  -424725.546435
    Std:   275446.015388
    Algorithm name: Differential Evolution - gen:500 F: 0.8 CR: 0.9 variant:2 ftol:1e-30 xtol:1e-30
    Best:  -921714.813626
    Mean:  -267281.545525
    Std:   147401.169371
    Algorithm name: DE - Self adaptive - gen:500 variant:2 self_adaptation:1 restart:1 ftol:1e-30 xtol:1e-30
    Best:  -955102.491141
    Mean:  -388459.048025
    Std:   175548.871584
    Algorithm name: DE - 1220 - gen:500 self_adaptation:1 variants:[1, 2, 3, 4, 5, 6, 7, 8, 9, 10] restart:1 ftol:1e-30 xtol:1e-30
    Best:  -826634.923343
    Mean:  -431728.105479
    Std:   147394.949029
    Algorithm name: Simulated Annealing (Corana's) - iter:10000 Ts:1 Tf:0.01 steps:1 bin_size:20 range:1 
    Best:  -704071.631519
    Mean:  -72288.2437947
    Std:   130772.148558
    Algorithm name: Improved Harmony Search - iter:10000 phmcr:0.85 ppar_min:0.35 ppar_max:0.99 bw_min:1e-05 bw_max:1 
    Best:  -1162602.59055
    Mean:  -711777.743437
    Std:   196905.326783
    Algorithm name: A Simple Genetic Algorithm - gen:500 CR:0.95 M:0.02 elitism:1 mutation:GAUSSIAN (0.1) selection:ROULETTE crossover:EXPONENTIAL 
    Best:  -863046.788195
    Mean:  -83057.9175561
    Std:   153151.963069
    Algorithm name: CMAES - gen:500 cc:-1 cs:-1 c1:-1 cmu:-1 sigma0:0.5 ftol:1e-30 xtol:1e-30 restart:1
    Best:  -1077012.50033
    Mean:  -108891.989264
    Std:   202073.046386
    Algorithm name: Artificial Bee Colony optimization - gen:250 limit:20 
    Best:  -868690.842365
    Mean:  -203558.475278
    Std:   174041.415709
Testing problem: Cassini 2, Dimension: 22
With Population Size: 20
    Algorithm name: Particle Swarm optimization - gen:500 omega:0.7298 eta1:2.05 eta2:2.05 variant:5 topology:2 topology param.:4 
    Best:  12.3214770193
    Mean:  22.8615502991
    Std:   3.70534701066
    Algorithm name: Differential Evolution - gen:500 F: 0.8 CR: 0.9 variant:2 ftol:1e-30 xtol:1e-30
    Best:  19.3922655269
    Mean:  29.5767514165
    Std:   2.67839006008
    Algorithm name: DE - Self adaptive - gen:500 variant:2 self_adaptation:1 restart:1 ftol:1e-30 xtol:1e-30
    Best:  16.7925663831
    Mean:  26.2944397562
    Std:   2.94029014226
    Algorithm name: DE - 1220 - gen:500 self_adaptation:1 variants:[1, 2, 3, 4, 5, 6, 7, 8, 9, 10] restart:1 ftol:1e-30 xtol:1e-30
    Best:  13.3158911009
    Mean:  24.3606836727
    Std:   3.83352440443
    Algorithm name: Simulated Annealing (Corana's) - iter:10000 Ts:1 Tf:0.01 steps:1 bin_size:20 range:1 
    Best:  11.6873202425
    Mean:  25.8310723572
    Std:   6.60952826373
    Algorithm name: Improved Harmony Search - iter:10000 phmcr:0.85 ppar_min:0.35 ppar_max:0.99 bw_min:1e-05 bw_max:1 
    Best:  12.3376881646
    Mean:  21.1532083874
    Std:   4.31223166473
    Algorithm name: A Simple Genetic Algorithm - gen:500 CR:0.95 M:0.02 elitism:1 mutation:GAUSSIAN (0.1) selection:ROULETTE crossover:EXPONENTIAL 
    Best:  19.5511746668
    Mean:  32.5915713664
    Std:   7.05069689819
    Algorithm name: CMAES - gen:500 cc:-1 cs:-1 c1:-1 cmu:-1 sigma0:0.5 ftol:1e-30 xtol:1e-30 restart:1
    Best:  16.7076353673
    Mean:  37.1963068137
    Std:   10.8263317674
    Algorithm name: Artificial Bee Colony optimization - gen:250 limit:20 
    Best:  19.0490287503
    Mean:  29.4969210835
    Std:   4.38771776161
Testing problem: Messenger full, Dimension: 26
With Population Size: 20
    Algorithm name: Particle Swarm optimization - gen:500 omega:0.7298 eta1:2.05 eta2:2.05 variant:5 topology:2 topology param.:4 
    Best:  12.8626955779
    Mean:  19.8635403917
    Std:   3.59650252294
    Algorithm name: Differential Evolution - gen:500 F: 0.8 CR: 0.9 variant:2 ftol:1e-30 xtol:1e-30
    Best:  19.4933578617
    Mean:  30.1482646739
    Std:   3.77938618624
    Algorithm name: DE - Self adaptive - gen:500 variant:2 self_adaptation:1 restart:1 ftol:1e-30 xtol:1e-30
    Best:  16.4062397914
    Mean:  26.7485796365
    Std:   3.91601645907
    Algorithm name: DE - 1220 - gen:500 self_adaptation:1 variants:[1, 2, 3, 4, 5, 6, 7, 8, 9, 10] restart:1 ftol:1e-30 xtol:1e-30
    Best:  14.4818255463
    Mean:  24.8478485265
    Std:   3.65379573738
    Algorithm name: Simulated Annealing (Corana's) - iter:10000 Ts:1 Tf:0.01 steps:1 bin_size:20 range:1 
    Best:  8.59348280596
    Mean:  25.6099059573
    Std:   8.97282030417
    Algorithm name: Improved Harmony Search - iter:10000 phmcr:0.85 ppar_min:0.35 ppar_max:0.99 bw_min:1e-05 bw_max:1 
    Best:  12.3470087752
    Mean:  21.8394475308
    Std:   3.74888127051
    Algorithm name: A Simple Genetic Algorithm - gen:500 CR:0.95 M:0.02 elitism:1 mutation:GAUSSIAN (0.1) selection:ROULETTE crossover:EXPONENTIAL 
    Best:  12.4963515719
    Mean:  30.880292139
    Std:   8.6855587624
    Algorithm name: CMAES - gen:500 cc:-1 cs:-1 c1:-1 cmu:-1 sigma0:0.5 ftol:1e-30 xtol:1e-30 restart:1
    Best:  16.5402709088
    Mean:  39.0999716639
    Std:   14.0695549792
    Algorithm name: Artificial Bee Colony optimization - gen:250 limit:20 
    Best:  17.0578112856
    Mean:  31.8662775879
 Std:   5.16178984201
Clone this wiki locally