Skip to content
This repository has been archived by the owner on Jul 16, 2024. It is now read-only.

Test Data (1112_200)

magnific0 edited this page Feb 25, 2014 · 1 revision
Trials: 200 - Population size: 200 - Generations: 500
Testing problem: Schwefel, Dimension: 10
With Population Size: 200
    Algorithm name: Particle Swarm optimization - gen:500 omega:0.7298 eta1:2.05 eta2:2.05 variant:5 topology:2 topology param.:4 
    Best:  3.91082721762e-11
    Mean:  251.056013404
    Std:   126.22498852
    Algorithm name: Differential Evolution - gen:500 F: 0.8 CR: 0.9 variant:2 ftol:1e-30 xtol:1e-30
    Best:  0.000644588086288
    Mean:  0.00469301022367
    Std:   0.0033050668651
    Algorithm name: DE - Self adaptive - gen:500 variant:2 self_adaptation:1 restart:1 ftol:1e-30 xtol:1e-30
    Best:  0.0
    Mean:  1.00044417195e-13
    Std:   2.84571576179e-13
    Algorithm name: DE - 1220 - gen:500 self_adaptation:1 variants:[1, 2, 3, 4, 5, 6, 7, 8, 9, 10] restart:1 ftol:1e-30 xtol:1e-30
    Best:  1.00044417195e-11
    Mean:  3.92005858885e-10
    Std:   4.01926592975e-10
    Algorithm name: Simulated Annealing (Corana's) - iter:100000 Ts:1 Tf:0.01 steps:1 bin_size:20 range:1 
    Best:  0.031997675087
    Mean:  331.013923088
    Std:   158.597490012
    Algorithm name: Improved Harmony Search - iter:100000 phmcr:0.85 ppar_min:0.35 ppar_max:0.99 bw_min:1e-05 bw_max:1 
    Best:  9.61192017712e-06
    Mean:  3.69834870526e-05
    Std:   1.00610267645e-05
    Algorithm name: A Simple Genetic Algorithm - gen:500 CR:0.95 M:0.02 elitism:1 mutation:GAUSSIAN (0.1) selection:ROULETTE crossover:EXPONENTIAL 
    Best:  0.943655324414
    Mean:  220.505874157
    Std:   150.473055427
    Algorithm name: CMAES - gen:500 cc:-1 cs:-1 c1:-1 cmu:-1 sigma0:0.5 ftol:1e-30 xtol:1e-30 restart:1 homebrew variant?:0
    Best:  1278.01245493
    Mean:  1850.57369856
    Std:   165.373894391
    Algorithm name: Artificial Bee Colony optimization - gen:250 limit:20 
    Best:  0.000290863324153
    Mean:  5.07164181582
    Std:   21.3676767354
Testing problem: Rastrigin, Dimension: 10
With Population Size: 200
    Algorithm name: Particle Swarm optimization - gen:500 omega:0.7298 eta1:2.05 eta2:2.05 variant:5 topology:2 topology param.:4 
    Best:  5.21814058629e-08
    Mean:  2.57459760804
    Std:   1.01587136092
    Algorithm name: Differential Evolution - gen:500 F: 0.8 CR: 0.9 variant:2 ftol:1e-30 xtol:1e-30
    Best:  1.92663974113
    Mean:  4.53919024032
    Std:   0.881486622765
    Algorithm name: DE - Self adaptive - gen:500 variant:2 self_adaptation:1 restart:1 ftol:1e-30 xtol:1e-30
    Best:  0.0
    Mean:  2.34479102801e-15
    Std:   6.78224114344e-15
    Algorithm name: DE - 1220 - gen:500 self_adaptation:1 variants:[1, 2, 3, 4, 5, 6, 7, 8, 9, 10] restart:1 ftol:1e-30 xtol:1e-30
    Best:  0.0
    Mean:  0.0
    Std:   0.0
    Algorithm name: Simulated Annealing (Corana's) - iter:100000 Ts:1 Tf:0.01 steps:1 bin_size:20 range:1 
    Best:  0.0317845296195
    Mean:  4.79739135598
    Std:   2.07110087284
    Algorithm name: Improved Harmony Search - iter:100000 phmcr:0.85 ppar_min:0.35 ppar_max:0.99 bw_min:1e-05 bw_max:1 
    Best:  2.62653618677e-06
    Mean:  6.28325120751e-06
    Std:   1.59681700913e-06
    Algorithm name: A Simple Genetic Algorithm - gen:500 CR:0.95 M:0.02 elitism:1 mutation:GAUSSIAN (0.1) selection:ROULETTE crossover:EXPONENTIAL 
    Best:  0.0619428810271
    Mean:  0.300024600566
    Std:   0.162964930027
    Algorithm name: CMAES - gen:500 cc:-1 cs:-1 c1:-1 cmu:-1 sigma0:0.5 ftol:1e-30 xtol:1e-30 restart:1 homebrew variant?:0
    Best:  0.0
    Mean:  0.526888399886
    Std:   0.673876961713
    Algorithm name: Artificial Bee Colony optimization - gen:250 limit:20 
    Best:  4.59443890577e-06
    Mean:  0.000210271407856
    Std:   0.000393081507121
Testing problem: Rosenbrock, Dimension: 10
With Population Size: 200
    Algorithm name: Particle Swarm optimization - gen:500 omega:0.7298 eta1:2.05 eta2:2.05 variant:5 topology:2 topology param.:4 
    Best:  4.6083428553e-05
    Mean:  1.63381405136
    Std:   1.53134518725
    Algorithm name: Differential Evolution - gen:500 F: 0.8 CR: 0.9 variant:2 ftol:1e-30 xtol:1e-30
    Best:  0.413298063342
    Mean:  0.915078969104
    Std:   0.194398287223
    Algorithm name: DE - Self adaptive - gen:500 variant:2 self_adaptation:1 restart:1 ftol:1e-30 xtol:1e-30
    Best:  0.0100210139656
    Mean:  1.66392942692
    Std:   1.01290993149
    Algorithm name: DE - 1220 - gen:500 self_adaptation:1 variants:[1, 2, 3, 4, 5, 6, 7, 8, 9, 10] restart:1 ftol:1e-30 xtol:1e-30
    Best:  3.5950679319
    Mean:  4.84246371362
    Std:   0.23354335713
    Algorithm name: Simulated Annealing (Corana's) - iter:100000 Ts:1 Tf:0.01 steps:1 bin_size:20 range:1 
    Best:  0.00830129358645
    Mean:  0.635681435191
    Std:   1.38971497209
    Algorithm name: Improved Harmony Search - iter:100000 phmcr:0.85 ppar_min:0.35 ppar_max:0.99 bw_min:1e-05 bw_max:1 
    Best:  6.69320188437
    Mean:  7.47696958397
    Std:   0.21410731154
    Algorithm name: A Simple Genetic Algorithm - gen:500 CR:0.95 M:0.02 elitism:1 mutation:GAUSSIAN (0.1) selection:ROULETTE crossover:EXPONENTIAL 
    Best:  7.94277804467
    Mean:  30.7686673051
    Std:   26.2014089546
    Algorithm name: CMAES - gen:500 cc:-1 cs:-1 c1:-1 cmu:-1 sigma0:0.5 ftol:1e-30 xtol:1e-30 restart:1 homebrew variant?:0
    Best:  1.11985091731e-26
    Mean:  6.52565631074e-23
    Std:   5.33205063042e-22
    Algorithm name: Artificial Bee Colony optimization - gen:250 limit:20 
    Best:  0.0219347750486
    Mean:  0.32910533303
    Std:   0.15311841318
Testing problem: Ackley, Dimension: 10
With Population Size: 200
    Algorithm name: Particle Swarm optimization - gen:500 omega:0.7298 eta1:2.05 eta2:2.05 variant:5 topology:2 topology param.:4 
    Best:  2.78504086459e-08
    Mean:  1.0993731868e-07
    Std:   5.100680727e-08
    Algorithm name: Differential Evolution - gen:500 F: 0.8 CR: 0.9 variant:2 ftol:1e-30 xtol:1e-30
    Best:  0.000258794594857
    Mean:  0.000437569631128
    Std:   8.24537625854e-05
    Algorithm name: DE - Self adaptive - gen:500 variant:2 self_adaptation:1 restart:1 ftol:1e-30 xtol:1e-30
    Best:  2.67466493398e-10
    Mean:  5.7188760394e-10
    Std:   1.68235323263e-10
    Algorithm name: DE - 1220 - gen:500 self_adaptation:1 variants:[1, 2, 3, 4, 5, 6, 7, 8, 9, 10] restart:1 ftol:1e-30 xtol:1e-30
    Best:  4.4408920985e-16
    Mean:  4.4408920985e-16
    Std:   0.0
    Algorithm name: Simulated Annealing (Corana's) - iter:100000 Ts:1 Tf:0.01 steps:1 bin_size:20 range:1 
    Best:  0.0159807641563
    Mean:  0.0824436462027
    Std:   0.0305505688537
    Algorithm name: Improved Harmony Search - iter:100000 phmcr:0.85 ppar_min:0.35 ppar_max:0.99 bw_min:1e-05 bw_max:1 
    Best:  0.000633404142079
    Mean:  0.000969838686231
    Std:   0.000131719307734
    Algorithm name: A Simple Genetic Algorithm - gen:500 CR:0.95 M:0.02 elitism:1 mutation:GAUSSIAN (0.1) selection:ROULETTE crossover:EXPONENTIAL 
    Best:  0.082708398476
    Mean:  0.280349180767
    Std:   0.105901745736
    Algorithm name: CMAES - gen:500 cc:-1 cs:-1 c1:-1 cmu:-1 sigma0:0.5 ftol:1e-30 xtol:1e-30 restart:1 homebrew variant?:0
    Best:  3.99680288865e-15
    Mean:  3.99680288865e-15
    Std:   0.0
    Algorithm name: Artificial Bee Colony optimization - gen:250 limit:20 
    Best:  4.31246952677e-05
    Mean:  0.000178075701688
    Std:   7.30963919846e-05
Testing problem: Griewank, Dimension: 10
With Population Size: 200
    Algorithm name: Particle Swarm optimization - gen:500 omega:0.7298 eta1:2.05 eta2:2.05 variant:5 topology:2 topology param.:4 
    Best:  2.14542827948e-11
    Mean:  0.0165313561729
    Std:   0.00921012920268
    Algorithm name: Differential Evolution - gen:500 F: 0.8 CR: 0.9 variant:2 ftol:1e-30 xtol:1e-30
    Best:  0.0803168343354
    Mean:  0.183248848224
    Std:   0.0338303533648
    Algorithm name: DE - Self adaptive - gen:500 variant:2 self_adaptation:1 restart:1 ftol:1e-30 xtol:1e-30
    Best:  4.94444180044e-08
    Mean:  9.47976659888e-05
    Std:   0.000145742529519
    Algorithm name: DE - 1220 - gen:500 self_adaptation:1 variants:[1, 2, 3, 4, 5, 6, 7, 8, 9, 10] restart:1 ftol:1e-30 xtol:1e-30
    Best:  0.0
    Mean:  0.0
    Std:   0.0
    Algorithm name: Simulated Annealing (Corana's) - iter:100000 Ts:1 Tf:0.01 steps:1 bin_size:20 range:1 
    Best:  0.0568738456289
    Mean:  0.322175119775
    Std:   0.141444603164
    Algorithm name: Improved Harmony Search - iter:100000 phmcr:0.85 ppar_min:0.35 ppar_max:0.99 bw_min:1e-05 bw_max:1 
    Best:  2.00601684343e-05
    Mean:  0.00128791105125
    Std:   0.00268848153191
    Algorithm name: A Simple Genetic Algorithm - gen:500 CR:0.95 M:0.02 elitism:1 mutation:GAUSSIAN (0.1) selection:ROULETTE crossover:EXPONENTIAL 
    Best:  0.325004821443
    Mean:  0.847763775311
    Std:   0.204843567124
    Algorithm name: CMAES - gen:500 cc:-1 cs:-1 c1:-1 cmu:-1 sigma0:0.5 ftol:1e-30 xtol:1e-30 restart:1 homebrew variant?:0
    Best:  0.0
    Mean:  0.0
    Std:   0.0
    Algorithm name: Artificial Bee Colony optimization - gen:250 limit:20 
    Best:  2.76887423256e-06
    Mean:  0.00130059561874
    Std:   0.00265667116973
Testing problem: Levy5, Dimension: 10
With Population Size: 200
    Algorithm name: Particle Swarm optimization - gen:500 omega:0.7298 eta1:2.05 eta2:2.05 variant:5 topology:2 topology param.:4 
    Best:  -4379.89898631
    Mean:  -4178.60695429
    Std:   156.725239494
    Algorithm name: Differential Evolution - gen:500 F: 0.8 CR: 0.9 variant:2 ftol:1e-30 xtol:1e-30
    Best:  -3772.85376415
    Mean:  -2978.76559746
    Std:   222.823442703
    Algorithm name: DE - Self adaptive - gen:500 variant:2 self_adaptation:1 restart:1 ftol:1e-30 xtol:1e-30
    Best:  -4411.20235322
    Mean:  -4398.52651727
    Std:   11.8129893032
    Algorithm name: DE - 1220 - gen:500 self_adaptation:1 variants:[1, 2, 3, 4, 5, 6, 7, 8, 9, 10] restart:1 ftol:1e-30 xtol:1e-30
    Best:  -4411.45903645
    Mean:  -4399.23257645
    Std:   10.9653207778
    Algorithm name: Simulated Annealing (Corana's) - iter:100000 Ts:1 Tf:0.01 steps:1 bin_size:20 range:1 
    Best:  -4244.25285803
    Mean:  -3519.01499499
    Std:   369.88844302
    Algorithm name: Improved Harmony Search - iter:100000 phmcr:0.85 ppar_min:0.35 ppar_max:0.99 bw_min:1e-05 bw_max:1 
    Best:  -4411.50187812
    Mean:  -4411.27455197
    Std:   2.22964759745
    Algorithm name: A Simple Genetic Algorithm - gen:500 CR:0.95 M:0.02 elitism:1 mutation:GAUSSIAN (0.1) selection:ROULETTE crossover:EXPONENTIAL 
    Best:  -4317.2597707
    Mean:  -3814.82982421
    Std:   380.96099186
    Algorithm name: CMAES - gen:500 cc:-1 cs:-1 c1:-1 cmu:-1 sigma0:0.5 ftol:1e-30 xtol:1e-30 restart:1 homebrew variant?:0
    Best:  -4411.52297573
    Mean:  -4179.94974632
    Std:   228.930154626
    Algorithm name: Artificial Bee Colony optimization - gen:250 limit:20 
    Best:  -4393.51657473
    Mean:  -4287.46834664
    Std:   43.3443723926
Testing problem: Cassini 1, Dimension: 6
With Population Size: 200
    Algorithm name: Particle Swarm optimization - gen:500 omega:0.7298 eta1:2.05 eta2:2.05 variant:5 topology:2 topology param.:4 
    Best:  5.10008596699
    Mean:  7.05521383775
    Std:   2.24641748407
    Algorithm name: Differential Evolution - gen:500 F: 0.8 CR: 0.9 variant:2 ftol:1e-30 xtol:1e-30
    Best:  5.30351637467
    Mean:  5.30412619464
    Std:   0.000428277220461
    Algorithm name: DE - Self adaptive - gen:500 variant:2 self_adaptation:1 restart:1 ftol:1e-30 xtol:1e-30
    Best:  5.30769207501
    Mean:  5.49986166697
    Std:   0.163170554218
    Algorithm name: DE - 1220 - gen:500 self_adaptation:1 variants:[1, 2, 3, 4, 5, 6, 7, 8, 9, 10] restart:1 ftol:1e-30 xtol:1e-30
    Best:  5.41247983261
    Mean:  6.33674880931
    Std:   0.502427304245
    Algorithm name: Simulated Annealing (Corana's) - iter:100000 Ts:1 Tf:0.01 steps:1 bin_size:20 range:1 
    Best:  5.11088615372
    Mean:  14.4336189402
    Std:   7.04277868839
    Algorithm name: Improved Harmony Search - iter:100000 phmcr:0.85 ppar_min:0.35 ppar_max:0.99 bw_min:1e-05 bw_max:1 
    Best:  5.32781748577
    Mean:  11.3272749693
    Std:   2.57961978523
    Algorithm name: A Simple Genetic Algorithm - gen:500 CR:0.95 M:0.02 elitism:1 mutation:GAUSSIAN (0.1) selection:ROULETTE crossover:EXPONENTIAL 
    Best:  5.33945229251
    Mean:  12.8625669299
    Std:   4.2886702699
    Algorithm name: CMAES - gen:500 cc:-1 cs:-1 c1:-1 cmu:-1 sigma0:0.5 ftol:1e-30 xtol:1e-30 restart:1 homebrew variant?:0
    Best:  8.75795267327
    Mean:  15.1857351284
    Std:   2.43394818092
    Algorithm name: Artificial Bee Colony optimization - gen:250 limit:20 
    Best:  5.50924102755
    Mean:  8.26672814531
    Std:   1.67566737834
Testing problem: GTOC_1, Dimension: 8
With Population Size: 200
    Algorithm name: Particle Swarm optimization - gen:500 omega:0.7298 eta1:2.05 eta2:2.05 variant:5 topology:2 topology param.:4 
    Best:  -1403125.93311
    Mean:  -868072.46005
    Std:   144255.327578
    Algorithm name: Differential Evolution - gen:500 F: 0.8 CR: 0.9 variant:2 ftol:1e-30 xtol:1e-30
    Best:  -903864.808888
    Mean:  -489714.580449
    Std:   108084.247258
    Algorithm name: DE - Self adaptive - gen:500 variant:2 self_adaptation:1 restart:1 ftol:1e-30 xtol:1e-30
    Best:  -989592.509429
    Mean:  -642389.111529
    Std:   111818.799994
    Algorithm name: DE - 1220 - gen:500 self_adaptation:1 variants:[1, 2, 3, 4, 5, 6, 7, 8, 9, 10] restart:1 ftol:1e-30 xtol:1e-30
    Best:  -1023260.90845
    Mean:  -673376.307562
    Std:   105992.868538
    Algorithm name: Simulated Annealing (Corana's) - iter:100000 Ts:1 Tf:0.01 steps:1 bin_size:20 range:1 
    Best:  -1160141.07444
    Mean:  -127612.595801
    Std:   197125.681595
    Algorithm name: Improved Harmony Search - iter:100000 phmcr:0.85 ppar_min:0.35 ppar_max:0.99 bw_min:1e-05 bw_max:1 
    Best:  -1040217.37761
    Mean:  -885216.769778
    Std:   111513.984212
    Algorithm name: A Simple Genetic Algorithm - gen:500 CR:0.95 M:0.02 elitism:1 mutation:GAUSSIAN (0.1) selection:ROULETTE crossover:EXPONENTIAL 
    Best:  -980049.728967
    Mean:  -253654.849066
    Std:   263588.341115
    Algorithm name: CMAES - gen:500 cc:-1 cs:-1 c1:-1 cmu:-1 sigma0:0.5 ftol:1e-30 xtol:1e-30 restart:1 homebrew variant?:0
    Best:  -1535606.34459
    Mean:  -475331.0941
    Std:   377870.201043
    Algorithm name: Artificial Bee Colony optimization - gen:250 limit:20 
    Best:  -1075296.0898
    Mean:  -691727.955799
    Std:   127374.205825
Testing problem: Cassini 2, Dimension: 22
With Population Size: 200
    Algorithm name: Particle Swarm optimization - gen:500 omega:0.7298 eta1:2.05 eta2:2.05 variant:5 topology:2 topology param.:4 
    Best:  10.8802647674
    Mean:  17.1923268984
    Std:   2.3373697246
    Algorithm name: Differential Evolution - gen:500 F: 0.8 CR: 0.9 variant:2 ftol:1e-30 xtol:1e-30
    Best:  18.1606851428
    Mean:  25.4343906217
    Std:   1.90383476027
    Algorithm name: DE - Self adaptive - gen:500 variant:2 self_adaptation:1 restart:1 ftol:1e-30 xtol:1e-30
    Best:  14.2296208914
    Mean:  20.9564081932
    Std:   2.14042711171
    Algorithm name: DE - 1220 - gen:500 self_adaptation:1 variants:[1, 2, 3, 4, 5, 6, 7, 8, 9, 10] restart:1 ftol:1e-30 xtol:1e-30
    Best:  13.0333668677
    Mean:  19.1577829654
    Std:   2.36758242198
    Algorithm name: Simulated Annealing (Corana's) - iter:100000 Ts:1 Tf:0.01 steps:1 bin_size:20 range:1 
    Best:  9.02770160991
    Mean:  20.3482423839
    Std:   3.73799201688
    Algorithm name: Improved Harmony Search - iter:100000 phmcr:0.85 ppar_min:0.35 ppar_max:0.99 bw_min:1e-05 bw_max:1 
    Best:  11.9495066569
    Mean:  17.2385885383
    Std:   2.38417976857
    Algorithm name: A Simple Genetic Algorithm - gen:500 CR:0.95 M:0.02 elitism:1 mutation:GAUSSIAN (0.1) selection:ROULETTE crossover:EXPONENTIAL 
    Best:  11.5702516706
    Mean:  24.1258620618
    Std:   3.34916640681
    Algorithm name: CMAES - gen:500 cc:-1 cs:-1 c1:-1 cmu:-1 sigma0:0.5 ftol:1e-30 xtol:1e-30 restart:1 homebrew variant?:0
    Best:  13.9422854308
    Mean:  19.5615097217
    Std:   1.77030632769
    Algorithm name: Artificial Bee Colony optimization - gen:250 limit:20 
    Best:  13.8853761242
    Mean:  21.2089515858
    Std:   2.77131579498
Testing problem: Messenger full, Dimension: 26
With Population Size: 200
    Algorithm name: Particle Swarm optimization - gen:500 omega:0.7298 eta1:2.05 eta2:2.05 variant:5 topology:2 topology param.:4 
    Best:  9.93409678596
    Mean:  15.4549387757
    Std:   1.91198642201
    Algorithm name: Differential Evolution - gen:500 F: 0.8 CR: 0.9 variant:2 ftol:1e-30 xtol:1e-30
    Best:  15.8024080868
    Mean:  23.8052420369
    Std:   2.56758844214
    Algorithm name: DE - Self adaptive - gen:500 variant:2 self_adaptation:1 restart:1 ftol:1e-30 xtol:1e-30
    Best:  14.522064158
    Mean:  20.8290332691
    Std:   2.07958355524
    Algorithm name: DE - 1220 - gen:500 self_adaptation:1 variants:[1, 2, 3, 4, 5, 6, 7, 8, 9, 10] restart:1 ftol:1e-30 xtol:1e-30
    Best:  13.2208816113
    Mean:  19.0682706316
    Std:   2.18705194653
    Algorithm name: Simulated Annealing (Corana's) - iter:100000 Ts:1 Tf:0.01 steps:1 bin_size:20 range:1 
    Best:  6.39871771099
    Mean:  18.0745976588
    Std:   5.67136151048
    Algorithm name: Improved Harmony Search - iter:100000 phmcr:0.85 ppar_min:0.35 ppar_max:0.99 bw_min:1e-05 bw_max:1 
    Best:  16.4545481209
    Mean:  20.8111088956
    Std:   1.6203652192
    Algorithm name: A Simple Genetic Algorithm - gen:500 CR:0.95 M:0.02 elitism:1 mutation:GAUSSIAN (0.1) selection:ROULETTE crossover:EXPONENTIAL 
    Best:  11.5254282036
    Mean:  19.5286900167
    Std:   3.21858187152
    Algorithm name: CMAES - gen:500 cc:-1 cs:-1 c1:-1 cmu:-1 sigma0:0.5 ftol:1e-30 xtol:1e-30 restart:1 homebrew variant?:0
    Best:  12.5649566715
    Mean:  14.4621177027
    Std:   1.25578254111
    Algorithm name: Artificial Bee Colony optimization - gen:250 limit:20 
    Best:  13.5412446666
    Mean:  22.0169687525
 Std:   2.66455380681
Clone this wiki locally