Skip to content
This repository has been archived by the owner on Jul 16, 2024. It is now read-only.

Test Data (1304_10)

magnific0 edited this page Feb 25, 2014 · 1 revision
Trials: 200 - Population size: 10 - Generations: 500
Testing problem: Schwefel, Dimension: 10
With Population Size: 10
    Algorithm name: Particle Swarm optimization - gen:500 omega:0.7298 eta1:2.05 eta2:2.05 variant:5 topology:2 topology param.:4 
    Best:	236.876669229
    Mean:	888.519585902
    Std:	283.693012809
    Algorithm name: MDE_pBX - gen:500 q percentage:0.15 power mean exponent:1.5 ftol:1e-30 xtol:1e-30
    Best:	441.299511744
    Mean:	1258.78309009
    Std:	310.698319457
    Algorithm name: Differential Evolution - gen:500 F: 0.8 CR: 0.9 variant:2 ftol:1e-30 xtol:1e-30
    Best:	5.28052623849e-09
    Mean:	57.8463838812
    Std:	84.4681292267
    Algorithm name: jDE - gen:500 variant:2 self_adaptation:1 memory:0 ftol:1e-30 xtol:1e-30
    Best:	0.0
    Mean:	107.565721689
    Std:	125.833049595
    Algorithm name: DE - 1220 - gen:500 self_adaptation:1 variants:[1, 2, 3, 4, 5, 6, 7, 8, 9, 10] memory:0 ftol:1e-30 xtol:1e-30
    Best:	9.09494701773e-13
    Mean:	32.8804046136
    Std:	67.4355090112
    Algorithm name: Simulated Annealing (Corana's) - iter:5000 Ts:1 Tf:0.01 steps:1 bin_size:20 range:1 
    Best:	0.0297393134597
    Mean:	341.474147127
    Std:	189.527716147
    Algorithm name: Improved Harmony Search - iter:5000 phmcr:0.85 ppar_min:0.35 ppar_max:0.99 bw_min:1e-05 bw_max:1 
    Best:	3.88572934753e-05
    Mean:	1.05657403534
    Std:	5.27731701303
    Algorithm name: A Simple Genetic Algorithm - gen:500 CR:0.95 M:0.02 elitism:1 mutation:GAUSSIAN (0.1) selection:ROULETTE crossover:EXPONENTIAL 
    Best:	18.1512686151
    Mean:	558.915377517
    Std:	193.609012874
    Algorithm name: CMAES - gen:500 cc:-1 cs:-1 c1:-1 cmu:-1 sigma0:0.5 ftol:1e-30 xtol:1e-30 memory:0
    Best:	1263.34768108
    Mean:	2132.47906662
    Std:	280.032593528
    Algorithm name: Artificial Bee Colony optimization - gen:250 limit:20 
    Best:	118.799556331
    Mean:	564.524626069
    Std:	183.411408451
Testing problem: Rastrigin, Dimension: 10
With Population Size: 10
    Algorithm name: Particle Swarm optimization - gen:500 omega:0.7298 eta1:2.05 eta2:2.05 variant:5 topology:2 topology param.:4 
    Best:	1.98991813302
    Mean:	9.9178496424
    Std:	5.03221380333
    Algorithm name: MDE_pBX - gen:500 q percentage:0.15 power mean exponent:1.5 ftol:1e-30 xtol:1e-30
    Best:	3.31295822411
    Mean:	14.5214567283
    Std:	5.2606117772
    Algorithm name: Differential Evolution - gen:500 F: 0.8 CR: 0.9 variant:2 ftol:1e-30 xtol:1e-30
    Best:	0.0239512390387
    Mean:	4.51466379667
    Std:	2.53802484642
    Algorithm name: jDE - gen:500 variant:2 self_adaptation:1 memory:0 ftol:1e-30 xtol:1e-30
    Best:	0.0
    Mean:	0.978401009867
    Std:	1.06348223623
    Algorithm name: DE - 1220 - gen:500 self_adaptation:1 variants:[1, 2, 3, 4, 5, 6, 7, 8, 9, 10] memory:0 ftol:1e-30 xtol:1e-30
    Best:	0.0
    Mean:	3.62376795238e-15
    Std:	4.08916572771e-14
    Algorithm name: Simulated Annealing (Corana's) - iter:5000 Ts:1 Tf:0.01 steps:1 bin_size:20 range:1 
    Best:	1.03245387932
    Mean:	4.58144249744
    Std:	2.0303006146
    Algorithm name: Improved Harmony Search - iter:5000 phmcr:0.85 ppar_min:0.35 ppar_max:0.99 bw_min:1e-05 bw_max:1 
    Best:	0.000140337233816
    Mean:	1.35105834571
    Std:	0.858320443568
    Algorithm name: A Simple Genetic Algorithm - gen:500 CR:0.95 M:0.02 elitism:1 mutation:GAUSSIAN (0.1) selection:ROULETTE crossover:EXPONENTIAL 
    Best:	0.479753679572
    Mean:	2.16060626488
    Std:	1.01645535577
    Algorithm name: CMAES - gen:500 cc:-1 cs:-1 c1:-1 cmu:-1 sigma0:0.5 ftol:1e-30 xtol:1e-30 memory:0
    Best:	2.98487717128
    Mean:	12.8797293879
    Std:	6.43206575524
    Algorithm name: Artificial Bee Colony optimization - gen:250 limit:20 
    Best:	1.02521492985
    Mean:	5.96215088245
    Std:	3.07911509344
Testing problem: Rosenbrock, Dimension: 10
With Population Size: 10
    Algorithm name: Particle Swarm optimization - gen:500 omega:0.7298 eta1:2.05 eta2:2.05 variant:5 topology:2 topology param.:4 
    Best:	0.00601654933709
    Mean:	12.6745752851
    Std:	23.8725174777
    Algorithm name: MDE_pBX - gen:500 q percentage:0.15 power mean exponent:1.5 ftol:1e-30 xtol:1e-30
    Best:	10.0763507004
    Mean:	3256.0438346
    Std:	7088.5287686
    Algorithm name: Differential Evolution - gen:500 F: 0.8 CR: 0.9 variant:2 ftol:1e-30 xtol:1e-30
    Best:	0.000737458517306
    Mean:	4.50448436316
    Std:	1.85197245911
    Algorithm name: jDE - gen:500 variant:2 self_adaptation:1 memory:0 ftol:1e-30 xtol:1e-30
    Best:	0.000975524237767
    Mean:	6.80343999246
    Std:	16.1362543314
    Algorithm name: DE - 1220 - gen:500 self_adaptation:1 variants:[1, 2, 3, 4, 5, 6, 7, 8, 9, 10] memory:0 ftol:1e-30 xtol:1e-30
    Best:	4.28636960984
    Mean:	6.289128061
    Std:	0.531063735644
    Algorithm name: Simulated Annealing (Corana's) - iter:5000 Ts:1 Tf:0.01 steps:1 bin_size:20 range:1 
    Best:	0.0143385225538
    Mean:	7.64107781628
    Std:	21.8420821744
    Algorithm name: Improved Harmony Search - iter:5000 phmcr:0.85 ppar_min:0.35 ppar_max:0.99 bw_min:1e-05 bw_max:1 
    Best:	2.06546573515
    Mean:	29.8946925863
    Std:	31.4545735214
    Algorithm name: A Simple Genetic Algorithm - gen:500 CR:0.95 M:0.02 elitism:1 mutation:GAUSSIAN (0.1) selection:ROULETTE crossover:EXPONENTIAL 
    Best:	2.74771371033
    Mean:	74.5017374415
    Std:	134.358375403
    Algorithm name: CMAES - gen:500 cc:-1 cs:-1 c1:-1 cmu:-1 sigma0:0.5 ftol:1e-30 xtol:1e-30 memory:0
    Best:	1.10801812447e-15
    Mean:	0.593786617021
    Std:	1.26208595877
    Algorithm name: Artificial Bee Colony optimization - gen:250 limit:20 
    Best:	0.475051875568
    Mean:	13.6123655619
    Std:	16.045044465
Testing problem: Ackley, Dimension: 10
With Population Size: 10
    Algorithm name: Particle Swarm optimization - gen:500 omega:0.7298 eta1:2.05 eta2:2.05 variant:5 topology:2 topology param.:4 
    Best:	2.47637825801e-08
    Mean:	0.358754911518
    Std:	1.52286958008
    Algorithm name: MDE_pBX - gen:500 q percentage:0.15 power mean exponent:1.5 ftol:1e-30 xtol:1e-30
    Best:	1.76407755114
    Mean:	8.10320401219
    Std:	2.89665676388
    Algorithm name: Differential Evolution - gen:500 F: 0.8 CR: 0.9 variant:2 ftol:1e-30 xtol:1e-30
    Best:	2.7349766758e-06
    Mean:	0.0346824008522
    Std:	0.19704866056
    Algorithm name: jDE - gen:500 variant:2 self_adaptation:1 memory:0 ftol:1e-30 xtol:1e-30
    Best:	2.57263099712e-10
    Mean:	0.471817650223
    Std:	0.809422641969
    Algorithm name: DE - 1220 - gen:500 self_adaptation:1 variants:[1, 2, 3, 4, 5, 6, 7, 8, 9, 10] memory:0 ftol:1e-30 xtol:1e-30
    Best:	3.99680288865e-15
    Mean:	2.60852672795e-12
    Std:	1.45455467743e-11
    Algorithm name: Simulated Annealing (Corana's) - iter:5000 Ts:1 Tf:0.01 steps:1 bin_size:20 range:1 
    Best:	0.0242413058679
    Mean:	0.084700252137
    Std:	0.0286608715182
    Algorithm name: Improved Harmony Search - iter:5000 phmcr:0.85 ppar_min:0.35 ppar_max:0.99 bw_min:1e-05 bw_max:1 
    Best:	0.000825038673338
    Mean:	0.0231509070209
    Std:	0.125625670203
    Algorithm name: A Simple Genetic Algorithm - gen:500 CR:0.95 M:0.02 elitism:1 mutation:GAUSSIAN (0.1) selection:ROULETTE crossover:EXPONENTIAL 
    Best:	0.194144163962
    Mean:	0.935840359245
    Std:	0.274274200409
    Algorithm name: CMAES - gen:500 cc:-1 cs:-1 c1:-1 cmu:-1 sigma0:0.5 ftol:1e-30 xtol:1e-30 memory:0
    Best:	7.54951656745e-15
    Mean:	0.0231029700544
    Std:	0.161720790379
    Algorithm name: Artificial Bee Colony optimization - gen:250 limit:20 
    Best:	0.000101099673281
    Mean:	0.479207441185
    Std:	0.686220831547
Testing problem: Griewank, Dimension: 10
With Population Size: 10
    Algorithm name: Particle Swarm optimization - gen:500 omega:0.7298 eta1:2.05 eta2:2.05 variant:5 topology:2 topology param.:4 
    Best:	0.00739604033463
    Mean:	0.0824595126869
    Std:	0.0479684151012
    Algorithm name: MDE_pBX - gen:500 q percentage:0.15 power mean exponent:1.5 ftol:1e-30 xtol:1e-30
    Best:	0.533778984165
    Mean:	6.780264194
    Std:	6.15678598776
    Algorithm name: Differential Evolution - gen:500 F: 0.8 CR: 0.9 variant:2 ftol:1e-30 xtol:1e-30
    Best:	0.000437168072037
    Mean:	0.171649709821
    Std:	0.0919292442706
    Algorithm name: jDE - gen:500 variant:2 self_adaptation:1 memory:0 ftol:1e-30 xtol:1e-30
    Best:	2.88657986403e-15
    Mean:	0.0354744362343
    Std:	0.102360825077
    Algorithm name: DE - 1220 - gen:500 self_adaptation:1 variants:[1, 2, 3, 4, 5, 6, 7, 8, 9, 10] memory:0 ftol:1e-30 xtol:1e-30
    Best:	0.0
    Mean:	1.18916763112e-05
    Std:	9.67347144451e-05
    Algorithm name: Simulated Annealing (Corana's) - iter:5000 Ts:1 Tf:0.01 steps:1 bin_size:20 range:1 
    Best:	0.105796585354
    Mean:	0.287103040077
    Std:	0.102188082672
    Algorithm name: Improved Harmony Search - iter:5000 phmcr:0.85 ppar_min:0.35 ppar_max:0.99 bw_min:1e-05 bw_max:1 
    Best:	6.29557815409e-05
    Mean:	0.0511155762524
    Std:	0.0356571435367
    Algorithm name: A Simple Genetic Algorithm - gen:500 CR:0.95 M:0.02 elitism:1 mutation:GAUSSIAN (0.1) selection:ROULETTE crossover:EXPONENTIAL 
    Best:	0.225574897479
    Mean:	0.859870344766
    Std:	0.195202887316
    Algorithm name: CMAES - gen:500 cc:-1 cs:-1 c1:-1 cmu:-1 sigma0:0.5 ftol:1e-30 xtol:1e-30 memory:0
    Best:	0.0
    Mean:	0.00901359478646
    Std:	0.00882135170444
    Algorithm name: Artificial Bee Colony optimization - gen:250 limit:20 
    Best:	0.000701097317695
    Mean:	0.179595476718
    Std:	0.158836453741
Testing problem: Levy5, Dimension: 10
With Population Size: 10
    Algorithm name: Particle Swarm optimization - gen:500 omega:0.7298 eta1:2.05 eta2:2.05 variant:5 topology:2 topology param.:4 
    Best:	-4316.87158004
    Mean:	-3200.80561369
    Std:	624.340560577
    Algorithm name: MDE_pBX - gen:500 q percentage:0.15 power mean exponent:1.5 ftol:1e-30 xtol:1e-30
    Best:	-3834.60710672
    Mean:	-1403.00811657
    Std:	1015.41943025
    Algorithm name: Differential Evolution - gen:500 F: 0.8 CR: 0.9 variant:2 ftol:1e-30 xtol:1e-30
    Best:	-4253.85243747
    Mean:	-2664.22212062
    Std:	564.223311432
    Algorithm name: jDE - gen:500 variant:2 self_adaptation:1 memory:0 ftol:1e-30 xtol:1e-30
    Best:	-4411.52297561
    Mean:	-4268.30388545
    Std:	117.970145835
    Algorithm name: DE - 1220 - gen:500 self_adaptation:1 variants:[1, 2, 3, 4, 5, 6, 7, 8, 9, 10] memory:0 ftol:1e-30 xtol:1e-30
    Best:	-4411.51950151
    Mean:	-4146.01552094
    Std:	239.031845991
    Algorithm name: Simulated Annealing (Corana's) - iter:5000 Ts:1 Tf:0.01 steps:1 bin_size:20 range:1 
    Best:	-4338.87966995
    Mean:	-3610.68592548
    Std:	416.468547975
    Algorithm name: Improved Harmony Search - iter:5000 phmcr:0.85 ppar_min:0.35 ppar_max:0.99 bw_min:1e-05 bw_max:1 
    Best:	-4373.39580347
    Mean:	-3719.08962061
    Std:	430.953811631
    Algorithm name: A Simple Genetic Algorithm - gen:500 CR:0.95 M:0.02 elitism:1 mutation:GAUSSIAN (0.1) selection:ROULETTE crossover:EXPONENTIAL 
    Best:	-3731.24156812
    Mean:	-2735.81239682
    Std:	506.774658177
    Algorithm name: CMAES - gen:500 cc:-1 cs:-1 c1:-1 cmu:-1 sigma0:0.5 ftol:1e-30 xtol:1e-30 memory:0
    Best:	-3672.2060151
    Mean:	-1751.76168757
    Std:	656.551245798
    Algorithm name: Artificial Bee Colony optimization - gen:250 limit:20 
    Best:	-3823.34376772
    Mean:	-2538.25844285
    Std:	541.779821936
Testing problem: Cassini 1, Dimension: 6
With Population Size: 10
    Algorithm name: Particle Swarm optimization - gen:500 omega:0.7298 eta1:2.05 eta2:2.05 variant:5 topology:2 topology param.:4 
    Best:	5.36481334606
    Mean:	15.111165869
    Std:	5.52907443545
    Algorithm name: MDE_pBX - gen:500 q percentage:0.15 power mean exponent:1.5 ftol:1e-30 xtol:1e-30
    Best:	5.85104344612
    Mean:	21.5379263248
    Std:	7.29154989673
    Algorithm name: Differential Evolution - gen:500 F: 0.8 CR: 0.9 variant:2 ftol:1e-30 xtol:1e-30
    Best:	4.93892454777
    Mean:	12.1672743511
    Std:	3.96417684383
    Algorithm name: jDE - gen:500 variant:2 self_adaptation:1 memory:0 ftol:1e-30 xtol:1e-30
    Best:	5.14447362566
    Mean:	11.6383573147
    Std:	3.96781384155
    Algorithm name: DE - 1220 - gen:500 self_adaptation:1 variants:[1, 2, 3, 4, 5, 6, 7, 8, 9, 10] memory:0 ftol:1e-30 xtol:1e-30
    Best:	5.48101589858
    Mean:	12.6566927796
    Std:	4.02806734642
    Algorithm name: Simulated Annealing (Corana's) - iter:5000 Ts:1 Tf:0.01 steps:1 bin_size:20 range:1 
    Best:	5.14460225687
    Mean:	22.1160538849
    Std:	13.9841209192
    Algorithm name: Improved Harmony Search - iter:5000 phmcr:0.85 ppar_min:0.35 ppar_max:0.99 bw_min:1e-05 bw_max:1 
    Best:	5.40607420644
    Mean:	11.5994906604
    Std:	4.23929648577
    Algorithm name: A Simple Genetic Algorithm - gen:500 CR:0.95 M:0.02 elitism:1 mutation:GAUSSIAN (0.1) selection:ROULETTE crossover:EXPONENTIAL 
    Best:	5.86559661202
    Mean:	37.874568689
    Std:	23.251884513
    Algorithm name: CMAES - gen:500 cc:-1 cs:-1 c1:-1 cmu:-1 sigma0:0.5 ftol:1e-30 xtol:1e-30 memory:0
    Best:	5.30342238424
    Mean:	16.1069262872
    Std:	3.9481433163
    Algorithm name: Artificial Bee Colony optimization - gen:250 limit:20 
    Best:	6.48026855394
    Mean:	15.1704144179
    Std:	4.11326624922
Testing problem: GTOC_1, Dimension: 8
With Population Size: 10
    Algorithm name: Particle Swarm optimization - gen:500 omega:0.7298 eta1:2.05 eta2:2.05 variant:5 topology:2 topology param.:4 
    Best:	-1090273.70029
    Mean:	-300516.321158
    Std:	289261.25314
    Algorithm name: MDE_pBX - gen:500 q percentage:0.15 power mean exponent:1.5 ftol:1e-30 xtol:1e-30
    Best:	-901285.354146
    Mean:	-166701.934181
    Std:	210011.698116
    Algorithm name: Differential Evolution - gen:500 F: 0.8 CR: 0.9 variant:2 ftol:1e-30 xtol:1e-30
    Best:	-1033445.99455
    Mean:	-200362.679126
    Std:	154413.414656
    Algorithm name: jDE - gen:500 variant:2 self_adaptation:1 memory:0 ftol:1e-30 xtol:1e-30
    Best:	-866831.663366
    Mean:	-276740.775929
    Std:	195518.96103
    Algorithm name: DE - 1220 - gen:500 self_adaptation:1 variants:[1, 2, 3, 4, 5, 6, 7, 8, 9, 10] memory:0 ftol:1e-30 xtol:1e-30
    Best:	-797546.110669
    Mean:	-312560.279329
    Std:	167244.523047
    Algorithm name: Simulated Annealing (Corana's) - iter:5000 Ts:1 Tf:0.01 steps:1 bin_size:20 range:1 
    Best:	-842748.126807
    Mean:	-114966.166853
    Std:	193822.777651
    Algorithm name: Improved Harmony Search - iter:5000 phmcr:0.85 ppar_min:0.35 ppar_max:0.99 bw_min:1e-05 bw_max:1 
    Best:	-1338352.6581
    Mean:	-591056.819431
    Std:	260006.582889
    Algorithm name: A Simple Genetic Algorithm - gen:500 CR:0.95 M:0.02 elitism:1 mutation:GAUSSIAN (0.1) selection:ROULETTE crossover:EXPONENTIAL 
    Best:	-598357.226387
    Mean:	-55631.3149476
    Std:	112599.293426
    Algorithm name: CMAES - gen:500 cc:-1 cs:-1 c1:-1 cmu:-1 sigma0:0.5 ftol:1e-30 xtol:1e-30 memory:0
    Best:	-961774.524907
    Mean:	-92222.7178635
    Std:	159304.498286
    Algorithm name: Artificial Bee Colony optimization - gen:250 limit:20 
    Best:	-802981.932069
    Mean:	-95808.3600323
    Std:	112939.607526
Testing problem: Cassini 2, Dimension: 22
With Population Size: 10
    Algorithm name: Particle Swarm optimization - gen:500 omega:0.7298 eta1:2.05 eta2:2.05 variant:5 topology:2 topology param.:4 
    Best:	11.7405081036
    Mean:	25.8823559703
    Std:	5.47186733793
    Algorithm name: MDE_pBX - gen:500 q percentage:0.15 power mean exponent:1.5 ftol:1e-30 xtol:1e-30
    Best:	25.7509001035
    Mean:	35.959667783
    Std:	5.708565468
    Algorithm name: Differential Evolution - gen:500 F: 0.8 CR: 0.9 variant:2 ftol:1e-30 xtol:1e-30
    Best:	23.2475054875
    Mean:	31.2185261947
    Std:	2.97188948656
    Algorithm name: jDE - gen:500 variant:2 self_adaptation:1 memory:0 ftol:1e-30 xtol:1e-30
    Best:	15.7979503258
    Mean:	28.0661131297
    Std:	3.42227632173
    Algorithm name: DE - 1220 - gen:500 self_adaptation:1 variants:[1, 2, 3, 4, 5, 6, 7, 8, 9, 10] memory:0 ftol:1e-30 xtol:1e-30
    Best:	15.1826789852
    Mean:	26.8691499484
    Std:	3.68967788285
    Algorithm name: Simulated Annealing (Corana's) - iter:5000 Ts:1 Tf:0.01 steps:1 bin_size:20 range:1 
    Best:	15.5879869637
    Mean:	29.0975703845
    Std:	7.53198874392
    Algorithm name: Improved Harmony Search - iter:5000 phmcr:0.85 ppar_min:0.35 ppar_max:0.99 bw_min:1e-05 bw_max:1 
    Best:	14.738554373
    Mean:	24.8324694139
    Std:	3.78441029155
    Algorithm name: A Simple Genetic Algorithm - gen:500 CR:0.95 M:0.02 elitism:1 mutation:GAUSSIAN (0.1) selection:ROULETTE crossover:EXPONENTIAL 
    Best:	19.7027814009
    Mean:	37.8519907198
    Std:	10.0425707738
    Algorithm name: CMAES - gen:500 cc:-1 cs:-1 c1:-1 cmu:-1 sigma0:0.5 ftol:1e-30 xtol:1e-30 memory:0
    Best:	18.6843012387
    Mean:	26.025061035
    Std:	3.66287638295
    Algorithm name: Artificial Bee Colony optimization - gen:250 limit:20 
    Best:	17.8130161578
    Mean:	32.7034180148
    Std:	6.19427983066
Testing problem: Messenger full, Dimension: 26
With Population Size: 10
    Algorithm name: Particle Swarm optimization - gen:500 omega:0.7298 eta1:2.05 eta2:2.05 variant:5 topology:2 topology param.:4 
    Best:	11.7262371024
    Mean:	22.9738562893
    Std:	5.12497119356
    Algorithm name: MDE_pBX - gen:500 q percentage:0.15 power mean exponent:1.5 ftol:1e-30 xtol:1e-30
    Best:	15.6186397914
    Mean:	31.8420952018
    Std:	6.99057194095
    Algorithm name: Differential Evolution - gen:500 F: 0.8 CR: 0.9 variant:2 ftol:1e-30 xtol:1e-30
    Best:	22.3137737675
    Mean:	32.6606504212
    Std:	4.90847928355
    Algorithm name: jDE - gen:500 variant:2 self_adaptation:1 memory:0 ftol:1e-30 xtol:1e-30
    Best:	18.6708513815
    Mean:	29.8476929372
    Std:	4.41933902979
    Algorithm name: DE - 1220 - gen:500 self_adaptation:1 variants:[1, 2, 3, 4, 5, 6, 7, 8, 9, 10] memory:0 ftol:1e-30 xtol:1e-30
    Best:	16.7460293059
    Mean:	27.4168427507
    Std:	4.08452441533
    Algorithm name: Simulated Annealing (Corana's) - iter:5000 Ts:1 Tf:0.01 steps:1 bin_size:20 range:1 
    Best:	13.2253322858
    Mean:	31.3024772716
    Std:	10.6857717046
    Algorithm name: Improved Harmony Search - iter:5000 phmcr:0.85 ppar_min:0.35 ppar_max:0.99 bw_min:1e-05 bw_max:1 
    Best:	13.4385967519
    Mean:	24.8509269061
    Std:	6.34800239581
    Algorithm name: A Simple Genetic Algorithm - gen:500 CR:0.95 M:0.02 elitism:1 mutation:GAUSSIAN (0.1) selection:ROULETTE crossover:EXPONENTIAL 
    Best:	18.6374219486
    Mean:	40.0035198676
    Std:	11.5242873543
    Algorithm name: CMAES - gen:500 cc:-1 cs:-1 c1:-1 cmu:-1 sigma0:0.5 ftol:1e-30 xtol:1e-30 memory:0
    Best:	14.8274534081
    Mean:	25.418839487
    Std:	5.26975079059
    Algorithm name: Artificial Bee Colony optimization - gen:250 limit:20 
    Best:	20.266122363
    Mean:	34.8662573432
 Std:	7.05239717966
Clone this wiki locally